

Microservices Interview Questions
For Java Developers (Spring Boot, Spring Cloud, Cloud

Native Applications)

Munish Chandel

Version 1.0, 13.02.2018

Table of Contents
Who should read this book? . đ1

Who should not buy this book? . đ1

How to get PDF version of the ebook? . đ1

Already bought ebook in another format? . đ1

Preface. đ2

The Outline . đ2

How to contact us. đ2

IDE and softwares required for microservices development . đ3

Part I - Core Concepts. đ5

1. Core Concepts in Microservices . đ6

1.1. Cohesion . đ6

1.2. Coupling . đ7

1.3. Immutability in Microservices . đ7

1.4. Open/Close Principle . đ7

1.5. DRY (Don’t Repeat Yourself) . đ7

1.6. SOLID. đ8

1.7. Single Responsibility Principle . đ8

1.8. 8 Fallacies of Distributed Computing . đ9

1.9. Continuous Integration (CI) . đ9

1.10. CAP Theorem . đ10

1.11. 12 Factor App . đ12

1.12. Typical Git workflow for a real project . đ15

2. Introduction to Microservices . đ17

2.1. Characteristics of a microservices architecture . đ17

2.2. Benefits of using Microservices Architecture . đ18

2.3. Challenges in Microservices . đ18

2.4. Difference between Microservices and SOA . đ19

2.5. References . đ19

Part II - Microservices Recipes . đ20

3. Microservices Interview Questions. đ21

3.1. How will you define Microservices Architecture?. đ22

3.2. What is Domain Driven Design?. đ22

3.3. What is Bounded Context?. đ23

3.4. What is polyglot persistence? Can this idea be used in monolithic applications as well? . . đ24

3.5. Why Microservices are better than Monoliths? . đ26

3.6. Isn’t in process communication in monolithic application faster than tons of remote

network calls in microservices architecture?

đ27

3.7. How microservices are different than SOA? . đ27

3.8. What is difference between small-services and microservices? . đ28

3.9. What are benefits of using microservices architecture? . đ28

3.10. How to partition a large application into microservices architecture, correctly?. đ29

3.11. How big a single microservice should be?. đ31

3.12. How do microservices communicate with each other? . đ31

3.13. What shall be preferred communication style in microservices: synchronous or

asynchronous?

đ32

3.14. What is difference between Orchestration and Choreography in microservices context? đ33

3.15. How to maintain ACID in microservice architecture? . đ33

3.16. How frequent a microservice be released into production?. đ35

3.17. How to achieve zero-downtime during the deployments? . đ36

3.18. How to slowly move users from older version of application to newer version? đ38

3.19. How will you monitor fleet of microservices in production? . đ38

3.20. How will you troubleshoot a failed API request that is spread across multiple services?. đ39

3.21. What are different layers of a single microservice? . đ39

3.22. How will you develop microservices using Java? . đ40

3.23. Is it a good practice to deploy multiple microservices in a single tomcat container (servlet

container)?

đ41

3.24. What are Cloud Native applications? . đ42

3.25. What is Spring Boot? . đ43

3.26. What is Spring Cloud?. đ44

3.27. What is difference between bootstrap.yml and application.yml? . đ46

3.28. How will you implement service discovery in microservices architecture? đ47

3.29. How does Eureka Server work? . đ48

3.30. How to externalize configuration in a distributed system? . đ50

3.31. How will you use config-server for your development, stage and production

environment?

đ51

3.32. What is difference between config first bootstrap and discovery first bootstrap in context

of Spring Cloud Config client?

đ52

3.33. How to halt a Spring Boot based microservice at startup if it can not connect to Config

Server during bootstrap?

đ54

3.34. How to refresh configuration changes on the fly in Spring Cloud environment? đ55

3.35. How to achieve client side load balancing in Spring Microservices using Spring Cloud? . đ56

3.36. How to use client side load-balancer Ribbon in your microservices architecture? đ57

3.37. How to use both LoadBalanced as well as normal RestTemplate object in the single

microservice?

đ57

3.38. How will you make use of Eureka for service discovery in Ribbon Load Balancer? đ58

3.39. Can we use Ribbon without eureka?. đ58

3.40. How will you use ribbon load balancer programatically? . đ60

3.41. What is difference between @EnableEurekaClient and @EnableDiscoveryClient? đ60

3.42. How to make microservices zone aware so as to prefer same zone services for inter- đ61

service communication using Spring Cloud?

3.43. How to list all instances of a single microservice in Spring Cloud environment? đ62

3.44. What is API Gateway?. đ63

3.45. How to protect internal endpoints leaking from API Gateway? . đ64

3.46. How to protect Sensitive Security Tokens from leaking into downstream system? đ64

3.47. How to retry failed requests at some other available instance using Client Side Load

Balancer?

đ65

3.48. What is Circuit Breaker Pattern? . đ66

3.49. What are Open, Closed and Half-Open states of Circuit Breaker? . đ66

3.50. What are use-cases for Circuit Breaker Pattern? . đ67

3.51. What are benefits of using Circuit Breaker Pattern? . đ67

3.52. Can circuit breaker be used in asynchronous communication? . đ67

3.53. What is Hystrix?. đ68

3.54. What are main features of Hystrix library? . đ68

3.55. How to use Hystrix for fallback execution? . đ69

3.56. When not to use Hystrix fallback on a particular microservice? . đ69

3.57. How will you ignore certain exceptions in Hystrix fallback execution? đ70

3.58. What is Strangulation Pattern in Microservices? . đ70

3.59. What is Circuit Breaker? . đ71

3.60. What is difference between using a Circuit Breaker and a naive approach where we

try/catch a remote method call and protect for failures?

đ71

3.61. What is Request Collapsing feature in Hystrix? . đ72

3.62. What is difference between Circuit Breaker and Hystrix? . đ72

3.63. Where exactly should i use Circuit Breaker Pattern? . đ72

3.64. What is bulkhead design pattern? . đ73

3.65. How does Hystrix implements Bulkhead Design Pattern? . đ73

3.66. What is Hystrix approach to Bulkhead Pattern? . đ74

3.67. In Microservices what are smart endpoints and dumb pipes?. đ75

3.68. What is difference between Semaphore and ThreadPool based configuration in Hystrix?đ75

3.69. How to handle versioning of microservices? . đ76

3.70. What is difference between partitioning microservices based on technical capabilities vs

business capabilities? Which one is better?

đ76

3.71. Running Spring boot app at different port on server startup. đ76

3.72. How will you run certain business logic at the app startup? . đ77

3.73. How to correctly implement a reporting microservice in a distributed system? đ78

3.74. What is Event Sourcing and CQRS? When should it be used? Should be use it for the entire

system?

đ81

3.75. How to send business errors from a RESTful microservice to client application? đ82

3.76. Is it a good idea to share common database across multiple microservices?. đ83

3.77. How should the technical architecture be for a single microservice? đ83

3.78. What is 2 Phase commit? Why it should not be used in microservices architecture? đ84

3.79. What is Eventual Consistency?. đ84

3.80. How will you make sure that the Email is only sent if the database transaction does not

fail?

đ85

3.81. How will you atomically update the database and publish an event to message broker

from single transaction?

đ85

3.82. How will you propagate security context of user when one microservice calls another

microservice on behalf of user?

đ87

3.83. What is Token Relay in Spring Security? . đ88

3.84. How to Enable Token Relay?. đ88

3.85. How to revoke Access and Refresh Tokens on data breach to limit the damage? đ88

3.86. Shall Authentication and Authorization be one service?. đ89

3.87. What is API Key security? . đ90

3.88. What are best practices for microservices architecture? . đ91

3.89. Shall we share common domain models or DTOs across microservices? đ93

3.90. How to share common code across multiple microservices? . đ95

3.91. What is continuous delivery? . đ97

3.92. How will you improve the performance of distributed system? . đ98

3.93. How will you implement caching for microservices?. đ99

3.94. Which protocol is generally used for client to service and inter-service communication?đ100

3.95. What are advantages of using asynchronous messaging within microservices

architecture?

đ101

3.96. What is good tool for documenting Microservices? . đ103

3.97. How will you integrate Swagger into your microservices?. đ103

3.98. What are common properties for a Spring Boot project? . đ105

4. Security in Microservices . đ106

4.1. Why Basic Authentication is not suitable in Microservices Context? đ106

4.2. Why OAuth2? . đ106

4.3. How OAuth2 Works? . đ107

4.4. What are different OAuth2 Roles? . đ107

4.5. What are different OAuth 2.0 grant types (OAuth flows)? . đ108

4.6. When shall I use resource owner credentials?. đ108

4.7. When shall I use Authorization Code grant? . đ109

4.8. When shall I use client credentials? . đ109

4.9. OAuth2 and Microservices . đ109

4.10. What is JWT?. đ111

4.11. What are usecases for JWT? . đ111

4.12. How does JWT looks like? . đ112

4.13. What is AccessToken and RefreshToken? . đ113

4.14. How to use a RefreshToken to request a new AccessToken? . đ114

4.15. How to call the protected resource using AccessToken? . đ115

4.16. Can a refreshToken be never expiring? How to make refreshToken life long valid? . . . đ116

4.17. Generate AccessToken for Client Credentials. đ117

4.18. How to implement the Logout functionality using JWT?. đ117

4.19. Security in inter-service communication . đ117

4.20. How to setup multiple authentications in Spring Security? . đ120

4.21. What is purpose of @EnableResourceServer? . đ120

4.22. What is purpose of @EnableOAuth2Sso?. đ120

4.23. What is purpose of @EnableOAuth2Client? . đ121

4.24. How can we add custom claims to JWT AccessToken?. đ121

4.25. Security Best Practices . đ122

4.26. How to enable spring security at service layer? . đ123

Part III - Testing Aspects . đ124

5. Testing Spring Boot based Microservices . đ125

5.1. Tools and Libraries available for testing . đ125

5.2. What is Mike Cohn’s Test Pyramid? . đ127

5.3. Testing Strategies . đ128

5.4. Mock vs Stub? . đ128

5.5. Unit Testing . đ129

5.6. Integration Tests . đ131

5.7. Contract-Driven Tests . đ132

5.8. End to End Tests . đ134

5.9. Best Practices in Testing . đ136

5.10. Interview Questions . đ136

Important Testing Resources . đ142

Bibliography . đ143

Websites & Articles . đ143

Books . đ143

Documentation . đ143

Persons to follow . đ143

Glossary . đ145

Thank you…. đ146

Receive free updates. đ146

Buy Cracking Core Java Interviews. đ146

Who should read this book?
This book is intended for two type of candidates:

• First who are preparing for a job change and want to brush up their skills for Spring Boot &
Spring Cloud based microservices architecture.

• Second, who want to use this book for its ready made recipes & solutions for various practical
problems in any Spring Boot + Spring Cloud based microservices project. Various topics
discussed in this book like design patterns, anti-patterns, common pitfalls, best practices, testing
strategies, security handling can be useful for anyone working in microservices architecture.

đ

Important Notice

If you do not know the basics of microservices, then probably this book is not for
you. Throughout this book, we assume that you have prior understanding of basic
concepts related to Spring Boot and Spring Cloud frameworks.

Who should not buy this book?
If you are looking forward for a sequential reading and tutorial kind of study material, then
probably this book is not a right pick. This book does not contain tutorials from scratch, instead it
discusses the important problems & challenges that one faces during design, development and
deployment of microservices.

How to get PDF version of the ebook?
You can buy this ebook from the below website to obtain a PDF copy:

https://books.shunyafoundation.com/to/VWVTPZ3A

Already bought ebook in another format?
If you have already bought this ebook in another format (epub, azw3, mobi etc.), then you are eligible
for PDF edition for free. Just login to https://books.shunyafoundation.com and create a ticket to get
free PDF copy after producing a valid receipt of purchase.

1

Preface
Microservices Architecture has become a trending pattern for developing modern distributed
systems across the IT industry. When it comes to Java, Spring Boot along with Spring Cloud is the
obvious choice for developing distributed systems. Spring Boot takes care of most of the boiler plate
code, so that teams can focus on the business functionality alone.

Adopting microservices architecture brings huge advantage to the teams and the enterprise in terms
of productivity, maintainability and scalability.

Salient features of this book are:

• Practical problem oriented approach

• Complex scenario have been explained by use of diagrams

• To the point discussion without long boring texts

• Brief code snippets has been provided wherever required

• Important topics like best practices, design patterns, security, testing strategies have been
discussed.

Various illustration diagrams and examples have been provided in this book to make concept self
explanatory. Business use cases, patterns, anti-patterns and pitfalls are also an area of focus
throughout the book.

The Outline
Book is mainly focussed on questions and answers with the following areas in focus:

Part 1 - Core Concepts

This section focuses on key concepts, terminology & design patterns used in Microservices
Architecture.

Part 2 - Microservices Recipes

This section is question oriented and covers problems & recipes on various design patterns like API
Gateway, Externalized configuration management, Circuit Breaker, Security OAuth2 and JWT etc.
More than 100 questions have been covered with proper explanation.

Part 3 - Testing Aspects

This section covers the testing aspects of microservices.

How to contact us
The author would appreciate a feedback from the readers. You can send us your feedback at
shunya.care@shunyafoundation.com

-Shunya Foundation

2

IDE and softwares required for microservices
development
We need a set of tooling to start developing spring-boot based microservices. Please be noted that
not all of these softwares are mandatory for microservices development.

Java 8 Development Kit

I don’t think it requires any introduction. You can straight away download the latest Java 8 from
the below location

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

IntelliJ IDEA

It is one of the best Integrated Development Environment for developing Java based
applications. IntelliJ IDEA is not a free software, so you must get a valid license for using it. You
can buy it from

https://www.jetbrains.com/idea/

Eclipse with STS

Eclipse is a powerful free alternative to IntelliJ IDEA. You can use it along with Spring Tool Set
(STS) for developing spring powered applications. You can download it from

http://www.eclipse.org/downloads/

Jenkins

Jenkins is an open source automation software for implementing Continuous Integration and
Continuous Delivery in your project. You can get it from

https://jenkins.io/

Spring Boot and Spring Cloud

Spring Boot makes it easy to create stand-alone, production grade applications. Spring Cloud
makes these application cloud ready.

https://projects.spring.io/spring-boot/

Swagger

Swagger is an open source framework that helps developers design, build, document and
consume RESTful Web Services.

https://swagger.io

Postman

Postman makes API development faster, easier, and better. Its one of the best tools for testing
restful apis. Standalone app for Mac/Ubuntu/Windows can be downloaded from:

https://www.getpostman.com/apps

3

Docker

Docker is an open platform for developers and sysadmins to build, ship, and run distributed
applications, whether on laptops, data center VMs, or the cloud.

https://www.docker.com/

Git

Git is a distributed version control system for tracking changes in computer files and
coordinating work on those files among multiple people.

https://git-scm.com/

Gradle

Gradle is an open-source build automation system that builds upon the concepts of Apache Ant
and Apache Maven and introduces a Groovy-based domain-specific language (DSL) instead of
the XML.

https://gradle.org/

RabbitMQ

RabbitMQ is the most widely deployed open source message broker. Get it from the official
website:

• https://www.rabbitmq.com/

• https://www.rabbitmq.com/getstarted.html

Database

MySQL, PosgreSQL, MongoDB, Apache Cassandra, Amazon DynamoDB, Amazon SQS, Neo4J, In
Memory Cache like Redis etc. as per business needs.

Let’s Encrypt

Let’s Encrypt is a certificate authority that provides free X.509 certificates for Transport Layer
Security (TLS) encryption via an automated process designed to eliminate the hitherto complex
process of manual creation, validation, signing, installation, and renewal of certificates for
secure websites. You can use these certificates for free (90 days validity) in your production
environment.

https://letsencrypt.org

4

Part I - Core Concepts

5

Chapter 1. Core Concepts in Microservices
Before we delve deep into microservices architecture, we must get familiar with few basic concepts.
We will use terms like Cohesion, Coupling, Immutability, DRY, Open/Close Principle, Single
Responsibility Principle in upcoming sections. If you are already aware of these basic terms, then
probably you can skip this chapter.

1.1. Cohesion
Cohesion refers to the degree of focus that a particular software component has. A multi-purpose
mobile phone with camera, radio, torch, etc. for example has low cohesion compared to a dedicated
DLSR that does one thing better.

Cohesion - wikipedia.org

Cohesion in software engineering is the degree to which the elements of a certain module
belong together. Thus, it is a measure of how strongly related each piece of functionality
expressed by the source code of a software module is.

Example of cohesion:

Lets suppose we have a monolithic application for a fictitious e-shop, that does order management,
inventory management, user management, marketing, delivery management etc. This monolithic
software has very low cohesion compared to a microservices based architecture where each
microservice is responsible for a particular business functionality, for example -

1. User management microservice

2. Inventory management microservice

3. Order management microservice

4. Demand generation/marketing microservice

5. Delivery/shipping tracking microservice

High cohesion often correlates with loose coupling, and vice versa.

Benefits of High Cohesion:

1. Reduced modular complexity, because each module does one thing at a time.

2. Increased system maintainability, because logical changes in the domain affect fewer modules,
and because changes in one module require fewer changes in other modules.

3. Increased module reusability, because application developers will find the component they
need more easily among the cohesive set of operations provided by the module.

4. Easy understandability and testability.

Microservices in general should have a high cohesion i.e. each microservice should do one thing

6

and do it well.

1.2. Coupling
Coupling refers to the degree of dependency that exists between two software components.

A very good day to day example of coupling is Mobile handset that has battery sealed into the
handset. Design in this case is tightly coupled because battery or motherboard can not be replaced
from each other without affecting each other.

In Object Oriented Design we always look for low coupling among various components so as to
achieve flexibility and good maintainability. Changes in one components shall not affect other
components of the system.

�
Important

High cohesion is almost always related to low coupling.

1.3. Immutability in Microservices
Immutable services can, by definition, be deployed without any heavy weight installers or
configuration management. This makes it easy to scale, load balance and makign services highly
available. Docker, a light weight container (compared to a virtual machine) can be used as
immutable infrastructure enabler.

1.4. Open/Close Principle
Our classses should be open for extension but closed for modifications. To put this more concretely,
you should write a class that does what it needs to flawlessly and not assuming that people should
come in and change it later. It’s closed for modification, but it can be extended by, for instance,
inheriting from it and overriding or extending certain behaviors.

1.5. DRY (Don’t Repeat Yourself)
DRY stands for Don’t Repeat Yourself. It promotes concept of code reusability.

In DRY people develop libraries and share these libraries. But we shall always keep in mind the
Bounded Context Principle along with DRY principle, we shall never share a code that violates the
Bounded Context Principle. And we shall never create shared unified models across Bounded
Contexts, for example its really a bad idea to create a single large unified model for Customer class
and share it across microservices.

The basic design principle behind DRY is that we should not try to reinvent the wheel. At the same
time, we should not share the same wheel for multiple purposes.

In Microservices architecture we shall avoid creating unified models that are shared across
microservices boundary, as these models defeats the principle of Bounded Context. But if there is
some resuable logic that can be shared across services, we shall create a shared library and use it as

7

a verisoned jar dependency everywhere.

1.6. SOLID
SOLID is a mnemonic acronym for five design principles intended to make software designs more
understandable, flexible and maintainable. The five design principles are,

1. Single responsibility principle - a class should have only a single responsibility (i.e. changes to
only one part of the software’s specification should be able to affect the specification of the
class).

2. Open/Close Principle - “software entities … should be open for extension, but closed for
modification.”

3. Liskov substitution principle - “objects in a program should be replaceable with instances of
their subtypes without altering the correctness of that program.”

4. Interface segregation principle - “many client-specific interfaces are better than one general-
purpose interface.”

5. Dependency inversion principle - one should “depend upon abstractions, [not] concretions.”

The principles are a subset of many principles promoted by Robert C. Martin.

1.7. Single Responsibility Principle
Single Responsibility Principle is based on principle of cohesion, where every module or class
should have responsibility over a single part of functionality provided by the software, and that
responsibility should be entirely encapsulated by the class.

A real world example

Consider a reporting module that creates content for a report and send it through email. If we
embed both these functionalities into single class/module, then we are not following Single
Responsibility Principle. Such software should be split into two module, one for creating the report
content, another for sending the email, each one having single responsibility.

A class should have only one reason to change

— Robert C. Martin

8

1.8. 8 Fallacies of Distributed Computing
In 1994, Peter Deutsch, a sun fellow at the time, drafted 7 assumptions architects and designers of
distributed systems are likely to make, which prove wrong in the long run - resulting in all sorts of
troubles and pains for the solution and architects who made the assumptions. In 1997 James
Gosling added another such fallacy [JDJ2004]. The assumptions are now collectively known as the
"The 8 fallacies of distributed computing" [Gosling]:

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn’t change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

However, these fallacies written 20 years back, are increasingly becoming irrelevant with the
advancement of science & technology.

References

• https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

• https://www.infoworld.com/article/3114195/system-management/the-8-fallacies-of-distributed-
computing-are-becoming-irrelevant.html

• http://www.rgoarchitects.com/Files/fallacies.pdf

1.9. Continuous Integration (CI)
Continuous Integration is a software development approach where developers merge their code
into a common repository, several times in a day.

Every checkin should run a build pipeline, that includes

1. running set of unit tests

2. running integration Tests

3. build pre-checks - findbugs/PMD rules/code formatting/etc.

4. code coverage tools if any. (JaCoCo)

5. end-to-end tests. (Selenium/HtmlUnit/etc.)

9

Continuous Integration Pipeline (Jenkins or Other CI Tool)

This ensures that the common repository is always ready for the production deployment.

CI provides the benefit of early feedback for any code that is developed and merged into common
repository.

Tools like Git, Jenkins and Maven/Gradle are normally used together to setup the build pipelines.

1.10. CAP Theorem

CAP theorem

In theoretical computer science, the CAP theorem, also named Brewer’s theorem after
computer scientist Eric Brewer, states that it is impossible for a distributed data store to
simultaneously provide more than two out of the following three guarantees

1. Consistency - Every read receives the most recent write or an error.

2. Availability - Every request receives a (non-error) response – without guarantee that it contains
the most recent write.

3. Partition tolerance - the system continues to operate despite arbitrary partitioning due to
network failures.

10

CAP (Consistency, Availability and Partition Tolerance) Theorem

CA databases

Most RDBMS (MySQL, PostreSQL, etc.) offer Consistency and High Availability. These databases are
good for transactional needs (order management, payment service, etc.)

AP & CP databases

Partition tolerance is a required attribute of distributed scalable databases. So only CP and AP are
the valid options for distributed databases. Out of these two, AP systems are easier to scale at the
cost of consistency. These AP systems generally rely on eventual consistency.

Examples of AP systems are Cassandra and Amazon DynamoDB.

CP systems have to compromise on Availability, but these systems provides Strong Consistency and
Partition Tolerance.

Examples of such systems are MongoDB and Redis.

11

1.11. 12 Factor App
The Twelve-Factor App is a recent methodology (and/or a manifesto) for writing web applications
which run as a service.

Codebase

One codebase, multiple deploys. This means that we should only have one codebase for different
versions of a microservices. Branches is ok, but different repositories are not.

Dependencies

Explicitly declare and isolate dependencies. The manifesto advices against relying on pre-
installed softwares or libraries on the host machine. Every dependency should be put into
pom.xml or build.gradle file.

Config

Store config in the environment. Do never commit your environment-specific configuration
(most importantly: password) in the source code repo. Spring Cloud Config provides server and
client-side support for externalized configuration in a distributed system. Using Spring Cloud
Config Server you have a central place to manage external properties for applications across all
environments.

Backing services

Treat backing services as attached resources. A microservice should treat external services
equally, regardless of whether you manage them or some other team. For example, never hard
code the absolute url for dependent service in your application code, even if the dependent
microservice is developed by your own team. For example, instead of hard coding url for
another service in your RestTemplate, use Ribbon (with or without Eureka) to define the url:

Correct approach

Creating named alias for a service, in bootstrap.yml

Listing 1. /src/main/resources/bootstrap.yml

product-service:
đ ribbon:
đ eureka:
đ enabled: false
đ listOfServers: localhost:8090,localhost:9092,localhost:9999
đ ServerListRefreshInterval: 15000

And then using named alias to call the service inside code.

đString greeting = this.restTemplate.getForObject("http://product-service/info", String.class);

Listing 2. Bad Approach (hardcoded host/port of dependent service)

đString greeting = this.restTemplate.getForObject("http://localhost:8090/info", String.class);

12

Build Release & Run

Strictly separate build and run stages. In other words, you should be able to build or compile the
code, then combine that with specific configuration information to create a specific release, then
deliberately run that release. It should be impossible to make code changes at runtime, for e.g.
changing the class files in tomcat directly. There should always be a unique id for each version
of release, mostly a timestamp. Release information should be immutable, any changes should
lead to a new release.

Build-Release-Run Principle

Processes

Execute the app as one or more stateless processes. This means that our microservices should be
stateless in nature, and should not rely on any state being present in memory or in filesystem.
Indeed the state does not belong in the code. So no sticky sessions, no in memory cache, no local
filesystem storage, etc. Distributed cache like memcache, ehcache or redis should be used
instead.

Port Binding

Export services via port binding. This is about having your application as standlone, instead of
relying on a running instance of an application server, where you deploy. Spring boot provides
mechanism to create an self-executable uber jar that contains all dependecies and embedded
servlet container (jetty or tomcat).

Concurrency

Scale out via the process model. In the twelve-factor app, processes are a first class citizen. This
does not exclude individual processes from handling their own internal multiplexing, via
threads inside the runtime VM, or the async/evented model found in tools such as
EventMachine, Twisted, or Node.js. But an individual VM can only grow so large (vertical scale),
so the application must also be able to span multiple processes running on multiple physical
machines. Twelve-factor app processes should never write PID files, rather it should rely on
operating system process manager such as systemd - a distributed process manager on a cloud
platform.

13

Disposability

Maximize robustness with fast startup and graceful shutdown. The twelve-factor app’s processes
are disposable, meaning they can be started or stopped at a moment’s notice. This facilitates fast
elastic scaling, rapid deployment of code or config changes, and robustness of production
deploys. Processes should strive to minimize startup time. Ideally, a process takes a few seconds
from the time the launch command is executed until the process is up and ready to receive
requests or jobs. Short startup time provides more agility for the release process and scaling up;
and it aids robustness, because the process manager can more easily move processes to new
physical machines when warranted.

Dev/Prod parity

Keep development, staging, and production as similar as possible. Your development
environment should almost identical to a production one (for example, to avoid some “works on
my machine” issues). That doesn’t mean your OS has to be the OS running in production, though.
Docker can be used for creating logical separation for your microservices.

Logs

Treat logs as event streams, sending all logs only to stdout. Most Java Developers would not
agree to this advise, though.

Admin processes

Run admin/management tasks as one-off processes. For example, a database migration should
be run using a separate process altogether.

References

• https://12factor.net/

• https://cloud.spring.io/spring-cloud-config/

• https://spring.io/guides/gs/client-side-load-balancing/

• https://12factor.net/build-release-run

14

1.12. Typical Git workflow for a real project
You can setup git workflow as per project’s need. Most common git workflow in any enterprise
grade project would be a variant of the the following:

Git workflow and deployment pipeline

The overall process works like this:

1. Sprint is created with set of user stories. These user stories will map to set of features in your
application.

2. Each developer will pick up a feature and create a corresponding feature branch in git
repository. He/she will continue to commit his work to the respective feature branch throughout
the sprint.

3. Once the feature branch is stable enough, changes will be merged to develop branch by the
team lead.

4. A Jenkins job is configured for each environment (dev, stage, production) that will listen to git
commits in respective branches and it will trigger the build đ test đ release jobs. So once
feature branch is merged into develop branch, Jenkins will automatically execute the build, test
it and deploy the changes to stage environment for manual/UAT testing.

5. Once changes in develop branch are tested up to satisfaction level, team lead will merge the
changes to master branch. Another Jenkins job will listen to the commits and execute the
build/test/deploy cycle for production environment.

15

�

Git vs SVN branch performance

If you have recently migrated from SVN, then you might think that creating
separate branch for each feature might be an overhead. But that’s not the case
with Git. Git branches are very light weight and you can create branches on the fly
for each bug you resolve, each feature/task you complete. In fact you should.

�

About GIT

Git was created by Linus Torvalds in 2005 for development of the Linux kernel,
with other kernel developers contributing to its initial development. Its current
maintainer since 2005 is Junio Hamano.

There is a beautiful book for learning git functionality, its freely hosted at:

https://git-scm.com/book/en/v2

16

Chapter 2. Introduction to Microservices
The term microservices became popular in late 2000 after big giants started moving their existing
monolithic/SOA application into smaller autonomous services. As of this writing (2018), any new
enterprise grade application in Java is potentially follows a microservices based architecture. Its a
trend that will not stop any sooner, until we find a better way to craft software applications.

A typical microservices architecture is shown in the following diagram.

A Typical Architecture Microservices using Spring Cloud

Browser, mobile applications (iOS, Android), IOT devices talk to microservices architectured based
distributed application using API gateway pattern. Each microservice has its own private data store,
if there is a need for persistence. In the coming sections we will explore more on this.

2.1. Characteristics of a microservices architecture
1. High Cohesion - Small and focussed on doing one thing well. Small does not mean less number

of lines of code because few programming languages are more verbose than others, but it
means the smallest functional area that a single microservices caters to.

2. Loose Coupling - Autonomous - the ability to deploy different services independently, and
reliability, due to the ability for a service to run even if another service is down.

3. Bounded Context - A Microservice serves a bounded context in a domain. It communicates with
the rest of the domain by using an interface for that Bounded context.

4. Organisation around business capabilities instead of around technology.

5. Continuous Delivery and Infrastructure automation.

6. Versioning for backward compatibility. Even multiple versions of same microservices can exist
in a production environment.

7. Fault Tolerance - if one service fails, it will not affect rest of the system. For example, if a

17

microservices serving the comments and reviews for a e-commerce fails, rest of the website
should run fine.

8. Decentralized data management with each service owning its database rather than a single
shared database. Every microservice has freedom to choose the right type of database
appropriate for its business use-case (for example, RDBMS for Order Management, NoSql for
catalogue management for an e-commerce website)

9. Eventual Consistency - event driven asynchronous updates.

10. Security - Every microservices should have capability to protect its own resource from
unauthorised access. This is achieved using stateless security mechanisms like JSON Web Token
(JWT pronounced as jot) with OAuth2.

2.2. Benefits of using Microservices Architecture
1. Each microservice is focussed on one business capability making them easier to maintain and

develop.

2. Each microservice can be developed and deployed independently by different teams, thus they
are autonomous.

3. Microservices can be created using heterogeneous technology stack. Appropriate technology
stacked can be chosen for a given microservices as per business needs. A high performance
engine can be written in Go while rest of the system can be developed using Spring Boot.

4. Scalability is better compared to monolithic application because most used microservice can be
scaled more compared to least used microservice.

5. Resilience - Is one of the service goes down, it will not affect the entire application. Outage in
service serving the static images content will not bring down the entire e-commerce web site.

2.3. Challenges in Microservices
1. DevOps is must because of explosion of number of processes in a production system. How to

start and stop fleet of services?

2. Complexity of distributed computing such as “network latency, fault tolerance, message
serialization, unreliable networks, handling asynchronous o/p, varying loads within our
application tiers, distributed transactions, etc.”

3. How to make configuration changes across the large fleet of services with minimal effort.

4. How to deploy multiple versions of single microservice and route calls appropriately.

5. How to disconnect a microservice from ecosystem when it starts to crash unexpectedly.

6. How to isolate a failed microservice and avoid cascading failures in the entire ecosystem.

7. How to discover services in an elastic manner considering that services may be going UP or
DOWN at any point in time.

8. How to aggregate logs/metrics across the services. How to identify different steps of a single
client request spread across span of microservices.

18

2.4. Difference between Microservices and SOA

Microservices are continuation to SOA.

SOA started gaining ground due to its distributed architecture approach and it emerged to combat
the problems of large monolithic applications, around 2006.

Both (SOA and Microservices) of these architectures share one common thing that they both are
distributed architecture and both allow high scalability. In both, service components are accessed
remotely through remote access protocol (RMI, REST, SOAP, AQMP, JMS, etc.). both are modular and
loosely coupled by design and offer high scalability. Microservices started gaining buzz in late 2000
after emergence of light weight containers, Docker, Orchestration Frameworks (Kubernetes,
mesos). Microservices differ from SOA in a significant manner conceptually -

1. SOA uses Enterprise Service Bus for communication, while microservices uses REST or some
other less elaborate messaging system (AQMP, etc). Also, microservice follow "Smart endpoints
and dumb points", which means that when a microservice needs another one as a dependency,
it should use it directly without any routing logic / components handling the pipe.

2. In microservices, the service deployment and management should be fully automated, whereas
SOA services are often implemented in deployment monoliths.

3. Generally microservices are significantly smaller than what SOA tends to be. Here we are not
talking about the codebase here because few languages are more verbose than the other ones.
We are talking about the scope (problem domain) of the service itself. Microservices generally
do one thing in better way.

4. Microservices should own their own data while SOA may share common database. So one
Microservices should not allow another Microservices to change/read its data directly.

5. Classic SOA is more platform driven, while we have lot of technology independence in case of
microservices. Each microservice can have its own technology stack based on its own functional
requirements. So microservices offers more choices in all dimensions.

6. Microservices makes as little assumption as possible on the external environment. A
Microservice should manage its own functional domain and data model.

The value of term Microservices is that it allows to put a label on a useful
subset of the SOA terminology.

— Martin Fowler

Microservices are essentially built over single responsibility principle. Robert C. Martin mentioned:

"Gather together those things that change for the same reason, and separate those things that change
for different reasons"

2.5. References
1. http://www.oracle.com/technetwork/issue-archive/2015/15-mar/o25architect-2458702.html

19

Part II - Microservices Recipes

20

Chapter 3. Microservices Interview
Questions
This chapter is mostly Q&A oriented and our focus area would be:

• questions on microservices design patterns, anti-patterns and common pitfalls.

• questions on development and deployment of microservices.

• questions on monitoring of microservices.

• questions on Spring Boot, Spring Cloud and Netflix OSS.

Lets move forward…

21

3.1. How will you define Microservices Architecture?
Microservices Architecture is a style of developing a scalable, distributed & highly automated
system made up of many small autonomous services. It is not a technology but a new trend evolved
out of SOA.

There is no single definition that fully describes the term "microservices". Famous authors have
tried to define it in following way:

Microservices are small, autonomous services that work together.

— Sam Newman

Loosely coupled service-oriented architecture with bounded contexts.

— Adrian Cockcroft

A microservice architecture is the natural consequence of applying the
single responsibility principle at the architectural level.

— Toby Clemson

Typical Microservices Architecture Spring Boot

3.2. What is Domain Driven Design?
Domain Driven Design (DDD) is a modelling technique for organized decomposition of complex
problem domains. Eric Evans’s book on Domain Driven Design has greatly influenced modern
architectural thinking. DDD technique can be used while partitioning a monolith application into

22

microservices architecture.

Key principles of Domain Driven Design are:

1. placing the project’s primary focus on the core domain and domain logic

2. basing complex designs on a model of the domain

3. initiating a creative collaboration between technical and domain experts to iteratively refine a
conceptual model that addresses particular domain problems.

�

The term "Domain Driven Design" was coined by Eric Evans in his book of the
same title.

Book link

Domain-Driven Design: Tackling Complexity in the Heart of Software

Reference

https://en.wikipedia.org/wiki/Domain-driven_design

3.3. What is Bounded Context?
Bounded Context is a central pattern in Domain Driven Design. In Bounded Context, everything
related to the domain is visible within context internally but opaque to other bounded contexts.
DDD deals with large models by dividing them into different Bounded Contexts and being explicit
about their interrelationships.

Monolithic Conceptual Model Problem

A single conceptual model for the entire orgnaization is very tricky to deal with. The only benefit of
such unified model is that integration is easy across the whole enterprise, but drawbacks are many,
for example:

1. At first, its very hard to build a single model that works for entire organization.

2. Its hard for others (teams) to understand it.

3. Its very difficult to change such shared model to accommodate the new business requirements.
The impact of such change will be widespread across team boundaries.

4. Any large enterprise needs a model that is either very large or abstract.

5. Meaning of a single word may be different in different department of a organization, so it may
be really difficult to come up with a single unified model. Such model, even if created, will lead
to lot of confusion across the teams.

DDD solves this problem by decomposing a large system into multiple Bounded Contexts, each of
which can have a unified model, opaque to other bounded contexts.

23

Bounded Context for sales and shipment departments of an enterprise

As shown in image above, the two different bounded contexts, namely sales department and
shipment department have duplicate models for customer and product that are opaque to other
bounded context. In non DDD (domain driven design) world, we could have created a single unified
model for customer and product and shared it using libraries across team boundaries.

Key points about Domain Driven Design

• DDD is about designing software based on models of the underlying domain.

• Bounded Context lays stress on the important observation that each entity works best within a
localized context. So instead of creating a unified Product and Customer class across the
fictitious eshop system, each problem domain (Sales, Support, Inventory, Shipment & Delivery
etc.) can create its own, and reconcile the difference at the integration points.

3.4. What is polyglot persistence? Can this idea be used
in monolithic applications as well?
Polyglot persistence is all about using different databases for different business needs within a
single distributed system. We already have different database products in the market each for a
specific business need, for example:

RDBMS

Relational databases are used for transactional needs (storing financial data, reporting
requirements, etc.)

MongoDB

24

Sample Chapters End Here.

Purchase Full PDF from Shunya Books
Platform

Click Here To Buy

	microservices-cover-page-2
	Microservices Interview Questions_sample_Part1
	Sample Purchase Page

