
 1Chapter - 	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Cracking
Java Interviews

(Java 8)

Cultivate skills to create your own path...
This e-book covers following topics

	 Core Java (including Java 8 lambda expression & stream api)
	 Concurrency and Java Collections Framework
	 Algorithms, Data structures and Puzzles
	 Object Oriented Design Problems
 Spring, Hibernate and REST
	 Sample Interview Questions

About Author
Munish Chandel (मनुीश चंदेल)

Munish is Java developer having 9+ years of
experience working for investment banks, consulting
and product companies.

cancerian0684@gmail.com
http://linkedIn.com/munish.chandel3rd edition, 2015

1
2
3
4
5
6

My skills my Job!!

Targeted for investment banks, product
and service based companies

Specifically Compiled For -
RBS, UBS, Morgan Stanley, JP Morgan,
Nomura, Barclays, Citibank, BlackRock, MarkIt,
Sapient, Global Logic, Adobe, Goldman Sachs,
BOA, hCentive, Infosys, TCS, Expedia, etc

 2Chapter - 	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Cracking Java Interviews

Copyright © 2014 - 2015 by Munish Chandel. All rights reserved.

This book attempts to address common questions faced by interviewee in
Indian IT Industry (investment banks, product and service companies)

Topics Covered In This Book
(OOP Concepts, Core Java 8, Algorithms & Data Structures, Concurrency,

Hibernate, Spring and REST)

 3Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Preface
This work is my sincere effort to consolidate solutions to some basic set of problems faced by my fellow mates
in their day to day work. This work can be used by candidates preparing to brush up their skills for Job change.

This Book Isn't
•	 A research work, neither it is intended to be.
•	 Of much help to a fresher in IT industry as it expects some level of hands on experience. It doesn't even

cover all the topics required by a newbie to start developing software from scratch.
•	 A reference book, one time read should be enough.

This Book Is
•	 Collection of excerpts discussing the common problems faced by an experienced Java Developer in his

day to day work. The intent is not to provide with the concrete solution to a given problem, but to show the
approach to get the problem solved. And there could definitely be more efficient ways to solve the given
problem compared to what is mentioned in this book. The approach shown here is limited to the knowledge
of the author.

•	 Collection of Questions in Core Java 8, Object Oriented Design, Concurrency, Algorithms & Data
Structures, Spring, Hibernate, REST and few puzzles.

Who should read this book?
•	 Experienced candidates who want to brush up their skills for Java Interviews specifically in investment

banking domain (having approach for enterprise level applications) and product based companies.
•	 Experienced Java developers who want to enhance their skills to solve their day to day software problems

in a better way.

I hope this book adds value to your skills. Be a knowledge seeker for lifetime and keep enjoying new learnings!

Munish Chandel
cancerian0684@gmail.com
http://linkedIn.com/munish.chandel
August 2014

 4Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

 5Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Contents
Cracking Java Interviews� 2

Preface� 3

IT Industry and Psyche of Developers � 13

Core Concepts, Spring & Hibernate� 15

Q 1. What are good software practices for developing Scalable, Testable and Maintainable Software ?� 15
Q 2. What are good books for reference on Java Programming ?
� 15
Q 3. What is Growth Road Map for a Java Developer?� 16
Q 4. Why should I choose Java for Software Development? What are Pros and Cons of Java 8 ?� 17
Q 5. What is difference between 32 bit and 64 bit versions of Java?� 17
Q 6. What are four basic principles of OOP?� 18
Q 7. What are the key paradigms for Developing the Clean Object Oriented Code?� 18
Q 8. What is Role of Requirement Understanding in software development process?� 18
Q 9. What is Logarithm? Why is it relevant in Software Development?� 20
Q 10. What do you understand by Big O notation, why is it important in software development ?� 21
Q 11. How would you determine the Time Complexity of a given algorithm, are there any general guidelines?� 22
Q 12. What is a sorting algorithm ? List down sorting algorithms by their time & memory complexity in Big O
notation ? When do we call a sorting algorithm 'Stable'?� 23
Q 13. Why Prime Numbers are given much importance in writing certain algorithms like hashcode()?� 29
Q 14. What is left shift <<, right shift >> and Unsigned right shift >>> operator in Java? How are these useful?�29
Q 15. What is 2's complement notation system for Binary Numbers?� 31
Q 16. How Heap space is divided in Java. How does Garbage Collector cleans up the unused Objects ? Why
shouldn't we use System.gc() command in production code?� 32
Q 17. What is difference between Stack and Heap area of JVM Memory? What is stored inside a stack and what
goes into heap?� 36
Q 18. What is a Binary Tree? Where and why is this used in Java Programs?� 37
Q 19. Discuss implementation and uses of TreeSet Collection?� 37
Q 20. How does Session handling works in Servlet environment?� 38
Q 21. Explain Servlet Life Cycle in a Servlet Container ?� 39
Q 22. How can one handle relative context path while coding the web applications? For example, your web
application may be deployed at a different context path in Tomcat, how will you make sure static/dynamic
resources works well at custom context path ?� 40
Q 23. How will you write a Recursive Program?� 41
Q 24. How many elements a complete binary tree could hold for a depth of 10? � 41
Q 25. Explain working of a hashing data structure, for example HashMap in Java.� 42
Q 26. Discuss internal's of a concurrent hashmap provided by Java Collections Framework.� 43
Q 27. Why do we need Reader Classes when we already have Streams Classes? What are the benefit of using a

 6Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Reader over a stream, in what scenario one should be preferred. � 45
Q 28. Discuss Visitor, Template, Decorator, Strategy, Observer and Facade Design Patterns?� 46
Q 29. What is a strong, soft, weak and Phantom reference in Java? Where are these used?� 48
Q 30. What are database transaction Isolation levels?� 50
Q 31. What is difference between Primary key and Unique Key?� 51
Q 32. Why do we need indexing on Database Table Columns ?� 51
Q 33. What are clustered and non-clustered indexes in Sybase Database?� 52
Q 34. How would you handle lazily loaded entities in web application development using hibernate?� 52
Q 35. What are OneToOne, OneToMany and ManyToMany relationship mappings in database design?� 53
Q 36. How would you implement ManyToMany mappings with the self entity in JPA?� 54
Q 37. What is Inner Join, Left Outer Join and Right Outer Join?� 55
Q 38. How will you list all the Customers from Customer Table who have no Order(s) yet?� 56
Q 39. How would you fetch Employee with nth highest Age from Employee Table using SQL?� 56
Q 40. Question: What is difference between Drop, Truncate and Delete Table commands in SQL?� 56
Q 41. What are Inheritance strategies in JPA?� 57
Q 42. How will you handle Concurrent updates to an database entity in JPA i.e. when two users try to update the
same database entity in parallel?� 57
Q 43. What are different types of Http Codes ?� 58
Q 44. What is difference between HTTP Redirect and Forward?� 58
Q 45. How will you check the owner information of a given domain name in web ?� 59
Q 46. What happens when you type www.google.com in your browser's address bar from an Indian Location?�60
Q 47. What is Idiom for Creating a Hibernate Transaction ?� 62
Q 48. Why do we need Spring Framework ?� 62
Q 49. What is Inversion of Control (or Dependency Injection)?� 62
Q 50. What is Bean Factory in Spring?� 63
Q 51. What is Application Context?� 63
Q 52. What are different types of Dependency Injection that spring support ? or in other words what are the
ways to initialize beans in Spring ?� 63
Q 53. What are different Bean Scope in Spring ?� 63
Q 54. What are some important Spring Modules ?� 63
Q 55. How will you load hierarchy of property files in Spring Context ?� 64
Q 56. How to efficiently generate ID's for an Entity in Hibernate/JPA ?� 64
Q 57. How to handle Bean Post Initialization and Pre Destroy Tasks in Spring Framework ? For example
resource loading after bean construction and resource cleanup before shutdown of spring context ?� 65
Q 58. How will you handle batch insert in hibernate for optimal usage of memory, network and CPU ?� 65
Q 59. How will you operate on records of a large database table with million of entries in it using Hibernate ?� 67
Q 60. Do you think Hibernate's SessionFactory and Session objects are thread safe ?� 67
Q 61. What is difference between Hibernate's first and second level cache ?� 68
Q 62. What is syntax of Cron Expression ?� 68
Q 63. How will you embed a PNG/GIF image inside a CSS file ?� 68
Q 64. Explain Stream API introduced in Java 8 ?� 69
Q 65. Most useful Code Snippets in Java 8 ?� 71
Q 66. How will you replace tokens in a given text with properties loaded from a property file using Java Regular
Expressions? � 74
Q 67. How will you configure custom sized ThreadPool for stream parallel operation in Java 8 ?� 75

Core Java Interview Questions� 76

 7Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 68. What are new Features added in Java 8 ?� 76
Q 69. What is difference between method overloading, method overriding, method and variable hiding?� 77
Q 70. What is Order of calling constructors in case of Inheritance?� 78
Q 71. When should we choose Array, ArrayList, LinkedList over one another for a given Scenario and Why?� 79
Q 72. We have 3 Classes A, B an C. Class C extends Class B and Class B extends Class A. Each class has an
method add(), is there a way to call A's add() method from Class C ?� 80
Q 73. Why wait is always used inside while loop as shown in the below snippet ? Discuss all the probable
reasons.
public synchronized void put(T element) throws InterruptedException {
 while(queue.size() == capacity) {
 wait();
 }
 queue.add(element);
 notify();
}� 81
Q 74. We have a method which iterates over a Collection. We want to remove certain elements from that
collection inside the loop in certain criteria is matched, How should we code this scenario ?� 82
Q 75. We are writing an API which will accept a Collection<Integer> as an argument and duplicate an element
in the Original Collection if certain criteria in met. How would you code such an API method ?� 83
Q 76. If hashcode() method of an object always returns 0 then what will be the impact on the functionality of
software ?� 83
Q 77. Iterator interface provides remove() method but no add() method. What could be the reason for such
behavior?� 84
Q 78. What does Collections.unmodifiableCollection() do ? Is it a good idea to use it safely in multi-threading
scenario without synchronization, Is it immutable ?� 84
Q 79. If we don't override hashcode() while using a object in hashing collection, what will be the impact ?� 85
Q 80. How would you detect a DeadLock in a running program ? � 85
Q 81. How would you avoid deadlock in a Java Program ?� 85
Q 82. Question : How would you produce DeadLock in Java ?� 86
Q 83. Which data type would you choose for storing currency values like Trading Price ? What's your opinion
about Float, Double and BigDecimal ?� 87
Q 84. How would you round a double value to certain decimal Precision and Scale ?� 89
Q 85. How great is the Idea of synchronizing the getter methods of a shared mutable state ? What if we don't ?�90
Q 86. Can the keys in Hashing data structure be made Mutable ?� 90
Q 87. Is it safe to iterate over collection returned by Collections.synchronizedCollection() method, or should we
synchronize the Iterating code ?� 91
Q 88. What are different type of Inner classes in Java ? How to choose a type with example ?� 92
Q 89. When should we need a static inner class rather than creating a top level class in Java Program?� 92
Q 90. Is it possible to write a method in Java which swaps two int/Integer ?� 93
Q 91. What all collections utilizes hashcode() method ?� 93
Q 92. Provide a diagram for collections framework.� 94
Q 93. What is Immutable Class. Why would you choose it ? How would you make a class immutable ?� 95
Q 94. Why shouldn't we prefer mutable static variables in our Java Code ?� 96
Q 95. Discuss Exception class hierarchy in Java. When should we extend our custom exception from
RuntimeException or Exception ?� 96
Q 96. How does method parameter passing works in Java ? Does it pass-by-reference or pass-by-value ?� 97
Q 97. How does an ArrayList expands itself when its maximum capacity is reached ?� 97

 8Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 98. What is StringPool In Java ?� 97
Q 99. What is instance level locking and class level locking ?� 98
Q 100. Explain threading jargons ?� 99
Q 101. What is float-int implicit conversion while doing calculation on mixed data type in Java?� 100
Q 102. Discuss Comparable and Comparator ? Which one should be used in a given scenario ?� 100
Q 103. How would you sort a collection of data based on two properties of an entity in Java, analogical to SQL's
Order by firstField, SecondField desc ?� 101
Q 104. What are the best practices for handling TimeZone in database transactions ?� 102
Q 105. How would you convert time from One Time Zone to another in Java ?� 102
Q 106. Will WeakHashMap's entry be collected if the value contains the only strong reference to the key ?� 103
Q 107. Why HashMap's initial capacity must be power of two ?� 104
Q 108. Can we traverse the list and remove its elements in the same iteration loop ?� 104
Q 109. Do I need to override object's equals() and hashcode() method for its use in a TreeMap ?� 104
Q 110. Implement a BlockingQueue using intrinsic locking mechanism.� 105
Q 111. Is there a way to acquire a single lock over ConcurrentHashMap instance ?� 105
Q 112. How will you implement a Blocking Queue using Lock and Condition Interface provided in JDK?� 105
Q 113. How would you cancel a method execution after time-out expires using Java Future?� 106
Q 114. Java already had Future interface, then why did they provide Completable Future class in Java 8 ?� 107
Q 115. What is difference between intrinsic synchronization and explicit locking using Lock ?� 109
Q 116. What are Stamped Locks ? How they are useful in Optimistic Scenario where thread contention is rare ?
� 110
Q 117. What is difference between Executor's submit() and execute() method ?� 112
Q 118. How will you find out first non-repeating character from a string ? For example, String input =
"aaabbbeggh", answer should be 'e'� 112
Q 119. What is difference between Callable and Runnable Interface?� 113
Q 120. What will happen when an exception occurs from within a synchronized code block ? Will lock be
retained or released ?� 113
Q 121. What is difference between sleep(), yield() and wait() method?� 114
Q 122. How does Generics work in Java? � 115
Q 123. What are Upper and Lower bounds in Generics? Where to choose one?� 116
Q 124. Discuss memory visibility of final fields in multi-threading scenario.� 117
Q 125. Where would you use LinkedHashSet provided by Java Collections?� 119
Q 126. What do you think is the reason for String Class to be Immutable?� 119
Q 127. How is String concatenation implemented in Java using + operator?
for example, String name = "munish" + "chandel"� 119
Q 128. Which Java data type would you choose for storing sensitive information, like passwords, and Why?� 120
Q 129. What is difference between StringBuilder and StringBuffer ?� 120
Q 130. What is difference between using Serializable & Externalizable Interfaces in Java?� 120
Q 131. How would you design Money Class in Java?� 120
Q 132. Where should we use GET, PUT, POST and DELETE method?� 122
Q 133. What is difference between HashMap, TreeMap and LinkedHashMap?� 122
Q 134. How would you write high performing IO code in Java? Can you write a sample code for calculating
checksum of a file in time efficient manner?� 123

 9Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 135. We have an Application and we want that only Single Instance should run for that Application. If
Application is already running then second instance should never be started. How would you handle this in Java?
� 126

Concurrency in Java� 127

Q 136. What is Concurrency? How will you implement Concurrency in your Java Programs?� 127
Q 137. There are two Threads A and B operating on a shared resource R, A needs to inform B that some
important changes has happened in R. What technique would you use in Java to achieve this?� 128
Q 138. What are different states of a Thread? What does those states tells us?� 129
Q 139. Question: What do you understand by Java Memory Model? What is double-checked locking? What is
different about final variables in new JMM?� 130
Q 140. Is i++ thread-safe (increment operation on primitive types)? � 134
Q 141. What happens when wait() & notify() method are called?� 134
Q 142. Discuss ThreadPoolExecutor ? What different Task Queuing Strategies are possible ? How will you
gracefully handle rejection for Tasks ?� 134
Q 143. How will you write a custom ThreadPoolExecutor that can be paused and resumed on demand ? You can
extend the existing ThreadPoolExecutor to add this new behavior.� 136
Q 144. How will you write your own custom thread pool executor from scratch ?� 137
Q 145. Discuss about volatile keyword and Java Memory Model?� 139
Q 146. What is a CAS? How does it help writing non-blocking scalable applications? Tell something about
Atomic Package provided by Java 1.6� 140
Q 147. There is a object state which is represented by two variables. How would you write a high throughput
non-blocking algorithm to update the state from multiple threads?� 141
Q 148. How would you implement AtomicFloat /AtomicDouble using CAS?� 142
Q 149. How LongAdder and LongAccumulator are different from AtomicLong & AtomicInteger ?� 144
Q 150. Can we implement check & update method (similar to compare and swap) using volatile alone?� 144
Q 151. How will you track the largest value monitored by different threads in an non-blocking fashion (using
Atomic Operations) ?� 144
Q 152. What is difference between Fork/Join framework and ExecutorService ?� 145
Q 153. How does ForkJoinPool helps in writing concurrent applications ? Please provide few examples for
RecursiveTask and RecursiveAction.� 145
Q 154. How will you calculate Fibonacci Sequence on a multi-core processor ?� 148
Q 155. How will you increment each element of an Integer array, utilizing all the cores of processor ?� 149
Q 156. You are writing a multi-threaded software piece for NSE for maintaining the volume of Trades made by
its individual brokers (icici direct, reliance). It's highly concurrent scenario and we can not use lock based thread
safety due to high demand of throughput. How would handle such scenario?� 150
Q 157. Calculate the time spread for 10 threads - Suppose T1 started earliest and T5 finished last, then the
difference between T5 and T1 will give time spread. � 151
Q 158. What are fail-fast Iterator? what is fail safe?� 153
Q 159. There is a stream of words which contains Anagrams. How would you print anagrams in a single bucket
from that stream?� 154
Q 160. Describe CopyOnWriteArrayList? Where is it used in Java Applications?� 155
Q 161. There are M number of Threads who work on N number of shared synchronized resources. How would
you make sure that deadlock does not happen?� 155
Q 162. Are there concurrent version for TreeMap and TreeSet in Java Collections Framework?� 155
Q 163. Is it safe to iterate over an ArrayList and remove its elements at the same time ? When do we get

 10Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

ConcurrentModificationException & hidden Iterator?� 156
Q 164. What is ThreadLocal class, how does it help writing multi-threading code? any usage with example?� 157
Q 165. How would you implement your own Transaction Handler in Core Java, using the EntityManager
created in last question?� 158
Q 166. What is AtomicInteger class and how is it different than using volatile or synchronized in a concurrent
environment?� 159
Q 167. You are writing a server application which converts microsoft word documents into pdf format. Under
the hood you are launching a binary executable which does the actual conversion of document. How would you
restrict the parallel launch of such binaries to 5 in Java, so as to limit the total load on the server.� 160
Q 168. What are common threading issues faced by Java Developers?� 162

Algorithms & Data Structures � 163

Q 169. ​Given a collection of 1 million integers ranging from 1 to 9, how would you sort them in Big O(n) time?
� 163
Q 170. Given 1 million trades objects, you need to write a method that searches if the specified trade is
contained in the collection or not. Which collection would you choose for storing these 1 million trades and
why?� 164
Q 171. I have an Integer array where every number appears even number of time except one. Find that number.
� 164
Q 172. how would you check if a number is even or odd using bit wise operator in Java?� 165
Q 173. How would you check if the given number is power of 2?� 165
Q 174. What is a PriorityQueue? How is it implemented in Java? What are its uses?� 166
Q 175. What is difference between Collections.sort() and Arrays.sort()? Which one is better in terms of time
efficiency?� 167
Q 176. There are 1 billion cell-phone numbers each having 10 digits, all of them stored randomly in a file. How
would you check if there exists any duplicate? Only 10 MB RAM is available to the system.� 167
Q 177. What is a Binary Search Tree? Does Java provide implementation for BST? How do you do in-order,
pre-order and post-order Traversal of its elements?� 168
Q 178. What is technique to sort data that is too large to bring into memory ?� 169
Q 179. Check if a binary tree is a Binary Search Tree or not?� 169
Q 180. How would you convert a sorted integer array to height balanced Binary Search Tree?
Input: Array {1, 2, 3}
Output: A Balanced BST
 2
 / \
 1 3� 170
Q 181. How would you calculate depth of a binary tree?� 171
Q 182. Calculate factorial using recursive method.� 171
Q 183. How will you swap two numbers using XOR operation?� 171
Q 184. You have a mixed pile of N nuts and N bolts and need to quickly find the corresponding pairs of nuts
and bolts. Each nut matches exactly one bolt, and each bolt matches exactly one nut. By fitting a nut and bolt
together, you can see which is bigger. But it is not possible to directly compare two nuts or two bolts. Given an
efficient method for solving the problem.� 172
Q 185. Your are give a file with 1 million numbers in it. How would you find the 20 biggest numbers out of this
file?� 172
Q 186. Reverse the bits of a number and check if the number is palindrome or not? � 172
Q 187. How would you mirror a Binary Tree?� 173

 11Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 188. How to calculate exponentiation of a number using squaring for performance reason?� 173
Q 189. How will you implement a Queue from scratch in Java?� 175
Q 190. How will you Implement a Stack using the Queue?� 176
Q 191. How would you implement a simple Math.random() method for a given range say (1-16)?� 177
Q 192. How an elevator decides priority of a given request. Suppose you are in an elevator at 5th floor and one
person presses 7th floor and then 2nd presses 8th floor. which data structure will be helpful to prioritize the
requests? � 177
Q 193. How would you multiply a number with 7 using bitwise hacks?� 178
Q 194. What is the best way to search an element from a sorted Integer Array? What would be it's time
complexity?� 178
Q 195. How would you reverse a Singly linked List?� 179
Q 196. How would you count word occurrence in a very large file ? How to keep track of top 10 occurring
words?� 180
Q 197. What is difference between synchronized HashMap and a hashtable?� 184
Q 198. What is difference between Iterator and LisIterator?� 184
Q 199. What do you understand by Token Bucket Algorithm. What is its use ?� 185
Q 200. How will you implement fibonacci series using Iterative & Recursive approach in Java 8 ?� 187
Q 201. How will you write a multi-threaded HttpDownloader program using Java 8 ?� 190
Q 202. How will you find first non-repeatable character from a String using Java 8 ?� 191
Q 203. How will you find Word Frequency in sorted order for a collection of words ?� 191
Q 204. How will you calculate MD5 hash of a given String in Java ?� 193
Q 205. There is a set of integer values representing the time consumed by a job execution in seconds, how will
you find average execution time ignoring the extreme run times (0 seconds or a value much above the average
execution time) ?� 193
Q 206. There are millions of telephone numbers in a country, each state of the country has specific phone
number range assigned to it. How will you determine which state a number belongs to ?� 193
Q 207. There is a number series in which subsequent number is either +1 or -1 of previous number. How will
you determine if the range of supplied numbers are contained in this series in minimum time ?� 195

Object Oriented Design � 196

Q 208. What are the key principles when designing a software for performance efficiency ?� 196
Q 209. How would you describe Producer Consumer problem in Java ? What is its significance ?� 196
Q 210. How would you implement a Caching for HttpDownloader Task using Decorator Design Pattern ?� 200
Q 211. Write Object Oriented design for library management system.� 201
Q 212. Design ATM machine.� 203
Q 213. Design a web crawler that will crawl for links(urls).� 204
Q 214. Design Phone Book for a mobile using TRIE (also known as prefix tree).� 208
Q 215. How would you resolve task's inter dependency, just as in maven/ant.
Let's consider the following task dependencies.

Here first row states that task 3 is dependent on task 1 and task 5, and so on. If the two consecutive tasks have no
dependency, then they can be run in any order.
The result should look like - [1, 5, 3, 2 ,4]	or [1, 5, 3, 4, 2]� 210
Q 216. How would you sort 900 MB of data using 100 MB of RAM ?
What is external sort ?� 214
Q 217. How would you design minimum number of platforms so that the buses can be accommodated as per

 12Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

their schedule ?
Bus Schedule for a given Platform� 217
Q 218. There is a pricing service which connects to Reuters & Bloomberg and fetches the latest price for the
given Instrument Tics. There could be multiple price events for the same Stock and we need to consider the latest
one. Design a service to show prices for the Top 10 stocks of the Day ?� 219
Q 219. Design a parking lot where cars and motorcycles can be parked. What data structure to use for finding
free parking spot in Parking Lot program? Assume there are million of parking slots.� 222
Q 220. There is three file contains flight data, write a standalone program to search flight detail from all files
depend on criteria ? Write JUnit to demonstrate the working.� 223
Q 221. Implement the classes to model two pieces of furniture (Desk and Chair) that can be constructed of
one of two kinds of materials (Steel and Oak). The classes representing every piece of furniture must have a
method getIgnitionPoint() that returns the integer temperature at which its material will combust. The design
must be extensible to allow other pieces of furniture and other materials to be added later. Do not use multiple
inheritance to implement the classes.� 229
Q 222. How would you simulate a digital Clock in Object Oriented Programming Language?� 231
Q 223. How would you design an elevator system for multi story building? Provide with request scheduling
algorithm & Class diagram for the design.� 234
Q 224. Given two log files, each with a billion username (each username appended to the log file), find the
username existing in both documents in the most efficient manner?� 234
Q 225. Design DVD renting system, database table, class and interface.� 235

Puzzles & Misc� 236

Q 226. Why man holes are round in shape ?� 236
Q 227. Solve two egg problem ?� 236
Q 228. There are 100 doors all closed initially.
1st iteration opens all doors (1x multiplier)
2nd iteration opens 2,4,6,8 .. doors (2x multiplier)
3rd iteration opens 3,6,9,12 ... doors (3x multiplier) and so on.
In the end of 100 iterations, which all doors will be in open state ?� 237
Q 229. What is probability of a daat, hitting closer to centre of a circle rather than circumference ?� 238
Q 230. What is financial Instrument, Bond, equity, Asset, future, option, swap and stock with example each ?�238
Q 231. Toolkit & Resources for a Java Developer.� 239
Q 232. Sample Unsolved Interview Questions.� 240
Q 233. Sample Unsolved Puzzles ?� 245
Q 234. Few sample UNIX questions.� 249
Q 235. Top Java Interview Questions ?� 250
Q 236. What is the Typical Interview Coverage for Core Java Candidate ?� 251
Q 237. What is the art of writing resume ?� 251
Q 238. Sample Questions on Swings framework.� 252
Q 239. What are the Interview questions that most candidates answer wrongly ?� 252

 13Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

IT Industry and Psyche of Developers
My Opinion in Indian Context
Question: What is overall picture of Indian IT Industry ?
IT is outcome of Intellectual Minds from western civilization in modern era. The knowledge is still sourced from
west in this domain at least at the time of this writing. The main reason for outsourcing IT related work to India
is economically cheap labour, though the trend has started changing now. Typically there are two types of
companies in India -
1.	 Product Companies (Adobe, Google, Amazon, Oracle, etc)
2.	 Services/Consulting/Broker Companies (TCS , Infosys, Cognizant, Wipro, HCL, Sapient, etc)
There is a big cultural and compensation differences in both these categories. Product based companies
provides better culture for the employee in terms of personal satisfaction (perks, salary, other activities).
Consulting companies compensate employees by short/long term onsite opportunities, which are rare in
Product Based Companies.

Question: What type of work people do in India IT Industry?
We can categorize typical IT work into two types - Green Fields and maintenance work.
Most people in Indian IT industry work for services based companies where major fraction of work is of
Maintenance & Support type. Even most product based companies outsource work to India once Project/
Product is stable. You could find exceptions to my words at some places.

Question: What causes a typical developer to switch his/her job so frequent, Is that bad, why that is
not the case in West ?
A thought to switch Job comes to one's mind when one finds blockage in growth opportunities in their current
organization. I could list few reasons for the same -
1.	 Salary disparity and scope for higher salaries in next Job is the major reason for job switch. Most service

based companies tries to maximize their profit offering lower salaries to its employees (that's beneficial for
freshers who do not have any experience), but as people acquire more skills they switch for bigger roles in
new Job. Demand and supply typically governs the salaries in India.

2.	 The quality of work is another reason for switch. Work quality directly relates to stress (more manual work
more stress)

3.	 Shift Timings and location preference also causes people to switch their jobs
To some extent this switch is fair because we can't expect someone to work for a company few thousand
dollars a year for his lifetime (As he acquires skills in parallel to take up more responsibilities). As the Industry
will mature, job shift will reduce. The IT companies in west are mature, salaries are already saturated, people
don't take much work stress, So western employees do not find many reasons for their Job switch.

Question: What is growth Pyramid of a typical Developer in Indian IT Industry ?
There are two broader categories for growth - Technical and Management. Depending on one's likings, people
incline to one of these paths. In Service Based companies , most employees start their carrier as a software
developer/qa, but over the time they shift to Management Side. This trend has started changing now, because
of the saturation on number of jobs in management side. So people will experience longer stretch working as a
developer in the coming decade. Employees working for startup and product based companies, tend to remain
on technical side, because Individual Contribution gives them better growth opportunities.

Question: What is typical psychology of average Indian Developer ? What kind of chaos pollute his
mind ?
Most Indian opt for IT, not by choice but for money, because of large unemployment in India. Moreover earning

 14Chapter - Introduction	 Cracking Java Interviews (Java 8, Hibernate & Spring)

money in IT industry is easy and effortless compared to other parallel opportunities. Many people wants to
take IT as the jumping ground for their higher studies (MBA, MS, etc). An average fresher is polluted with the
thoughts about his career growth, and is unsure about his key interests in IT field, trying various alternates in
first few years.

Question: What is the Problem with Most Indian Developers in terms of Skills ?
Majority of IT crowd does not have good hold over their primary skills (Technical, Presentation) which are
required for the work. The underlying cause for the low skills are poor quality of education and the type of work
which is fed to Indian Companies. The majority of work does not require high quality of skills on developer's
part. Many people learn by their own, build their skills and fight for better quality work. One should have a very
good hold over his primary skill set and look for work which is matching those skills.

Question: What are advantages of acquiring skills ?
1.	 Very good understanding the basic computer science along with the core language skills helps write very

efficient/scalable/maintainable software that is capable of utilizing the available hardware effectively, with
minimum bugs.

2.	 Skills alleviates work stress, by empowering us to design intelligently, automating the mundane tasks.
3.	 When you have good understanding of hardware and software then you get a deep penetration into

software development which otherwise is not possible.
4.	 Better skills may attract better Job profile.

Question: Would it help if I memorize all the questions for cracking interviews?
No, it will not. But memorizing the most common Patterns of software development will definitely help
crack not only the interview but also make your day to day work life easy. A single pattern resolves n number
of problems emerging from that pattern, and we should always look forward finding the patterns instead of
solution to a particular problem.

Question: Why do interviewers ask rocket science questions in interviews even if the new role does
not require any such skills ?
Hiring in IT industry is not regulated by any means, it is solely up to the interviewer to choose the topic for
discussion in the interview. In today's intellectual world, people like intellectual war, and interview is a good
place for that. I do not find any harm by such interview process unless interviewer hides the real picture of work
that one needs to perform after joining the new role. For sure there is one plus point to such interview process
that it will definitely tend to raise our skill set.

Question: Why people take so many offers at the time of Job change, doesn't it add to chaos ?
The main reason for doing so, is the disparity between work and salary across the companies. People feel
insecure at financial level and try their best to grab the most paying Job opportunity, and that's fair from
employee perspective. On the other hand, companies tend to maximize their profit by limiting the salary offer
as per individual's previous company's salary. So it is a game, where both the employer and the employee are
fighting to maximize their own profit. Ultimately, the Demand and Supply equation balances the fight between
employer and the employee. Saturation of salaries and work quality in coming years might hamper this.

Question: Quality work never reaches India, is that right ?
Its true for many companies, even in the big MNCs. Seed for existence of Indian counterpart of a MNC is the
cheap and easily scalable labour who is happy to do anything for money. At present, best practices for software
development exists in Europe & some parts of US. Most Indian MNCs are never setup for best talent so we
can not expect quality work at the moment. Work here is mostly committed by management for fixed cost, no
matter how you do it, how long you stretch. The good part is, exceptions are there and changes is in progress.

 15Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

												 Chapter 1
Core Concepts, Spring & Hibernate
Q 1. What are good software practices for developing Scalable, Testable and Main-
tainable Software ?

1.	 Understand the requirement and the business, asks questions to resolve ambiguities.
2.	 Follow good software development practices like Agile with Test Driven Development. Agile development

is all about incorporating changes in the software without much pain. TDD helps achieving agility in your
software. A very good test coverage (End to End and Unit Tests) keeps a developer away from last minute
stress at production deployment time.

3.	 Automate all non-productive mundane tasks related to deployment, e.g. Salt Stack or AIDS for Dev Ops
4.	 Take a software change request only if it is really required. If there is no value addition to the customer then

don't do it.
5.	 Keep refactoring your code base time to time, don't leave any duplicate code inside code base. Follow DRY

(don't repeat yourself) strictly. Every object must have a single authoritative representation in the system.
Software development is like the art of gardening where refactoring takes it to a next level.

6.	 Add an automated test case for every new bug found. Appropriate test assertions are equally important
otherwise it will just reflect on the code coverage without much help.

7.	 Document interfaces and reasons instead of implementation.
8.	 Use Profiling Tools to identify bottlenecks of your application. One can use jvisualVM tool bundled in JDK

to know the JVM profile of an application, though there are some commercially available easy to use tools
available in market, e.g. JProfiler

9.	 Use pair programming when bringing someone new up to speed and when tackling particularly tricky
problems which are hard to KT otherwise. This also leads to smooth landing for the new employees.

10.	Use tools to find the duplicates and then refactor to reuse the existing code with better design. IntelliJ is
one of the good tools that will take care of boilerplate stuff (but soon you will become it's luxury addict)

11.	Work in small steps with frequent feedback and correction to avoid the last minute surprises (Agile).
12.	Continuous Integration environment is must for rapid bug free, coordinated development. Tools like

TeamCity, Hudson, Jenkins, etc are can be leveraged for Continuous Integration.
13.	Software development without Art, Fun and Creativity is boring and will bring depression, so be aware of

this warning sign. Don't leave learning, be a student for lifetime!!!

Q 2. What are good books for reference on Java Programming ?
Core Java Framework Design Patterns, Algorithms & Misc.
1.	 OCJP Oracle Certified

Programmer for Java
2.	 Java 8 for the Really

Impatient, Cay S.
Horstmann

3.	 Java Concurrency in
Practice by Brian Goetz

4.	 Head First Java
5.	 Effective Java, 2nd Edition

6.	 Spring in Action by Craig
Walls, 4th Edition

7.	 Java Persistence with
Hibernate

8.	 Rest In Action, Manning
9.	 jQuery in Action

10.	Head First Design Patterns, Kathy Sierra
11.	Algorithms, Robert Sedgewick, Kevin
12.	Data Structures and Algorithms Made

Easy In Java, Narasimha Karumanchi
13.	Cracking The Coding Interviews, 150

Programming Questions and Solutions
by Gayle, Careercup

14.	Programming Pearls, 2nd Edition
15.	http://www.geeksforgeeks.org/

 16Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 3. What is Growth Road Map for a Java Developer?

A deep understanding of basic software components is must for a developer who wants to write Scalable
Enterprise/Internet Applications from scratch using Java. Below is the matrix showing a hierarchy of skills that
are required for a senior software developer who is looking for a long term carrier in software development.

Priority Category Topics

7 Practices Agile Development Methodologies (using Test Driven Development, Pair
Programming and Continuous Integration), SOA, etc

6 Web Tier Servlet basics, HTTP Basics, JavaScript & JQuery, RESTful web
services, MVC Design Pattern, Spring, etc

5 Database

SQL, PLSQL, Database Indexes, JPA/Hibernate QL, Table to Entity
Mapping, Inheritance in JPA (Table per class, joined, single table),
Transaction Isolation Level, embeddable, Mapped Super Classes, entity
relationships - OneToOne, OneToMany, ManyToMany.

4 Core Java

Inheritance, Generics, Garbage Collector, good hold over Concurrency
(synchronizer, non-blocking algorithms using atomic package,
executor service, Java Memory Model, Immutability, volatile, Fork/
Join), Internal of Java Collections Framework (HashMap, LinkedList,
ConcurrentHashMap, PriorityQueue, TreeMap)

3 Algorithms

Hashing Algorithms, Tree Traversal, Tree Insertion, Tree balancing
using left & right rotation, Sorting (quick, merge, external merge, bucket,
counting), Binary Search, BFS, DFS, Topological Sorting using Graph,
Dijkstra's algorithm, Dynamic Programing & Sorting Algorithms

2 Data
Structures

ArrayList, LinkedList, Stack, Queue, Tree (Binary Search Tree, Red
Black Tree, Binary Heap, PriorityQueue), Set, Hashtable, Prefix Tree
(Trie), Suffix Tree, Graph Traversal, etc.

1 Concepts

Object Oriented Programming & Design
Test Driven Development (JUnit, Mockito, etc)
Familiarity with Version Control System, Continuous Integration,
Design Patterns (Abstract Factory, Builder, Singleton, Observer,
Template, Strategy, Visitor, Decorator, Facade, Flyweight, etc)
Memory Management (Heap, Stack, Memory Generations in Java)
Logarithm, Big-O notation, Bitwise Manipulation & Recursion
Number System (2's complement, binary, hexadecimal, etc)

Skills Matrix for a Java Developer

 17Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 4. Why should I choose Java for Software Development? What are Pros and Cons
of Java 8 ?

Java Pros
1.	 Java is free, download it and start creating your own applications
2.	 Plenty of third party libraries, frameworks & IDE for faster development (spring, hibernate, intelliJ, etc)
3.	 Platform independent, write once run on most modern platform (Unix, Windows, Mac, 32/64 bit Hardware)
4.	 Supports Object Oriented Programming, easy to model real life scenarios into object model
5.	 In built support for multi-threading & concurrency, Its easy to write scalable applications in Java that

can utilize multi-core processors, clusters of machine, distributed RAM, etc. There is in built support for
Threads, ForkJoinTask (Work Stealing Algorithm), non-blocking algorithm using CAS, Stream API, Parallel
Streams, CompletableFuture, Parallel Array Operations, Atomic Values, LongAccumulator, etc.

6.	 Very good support for Internationalization
7.	 Memory management is automatic by use of garbage collector (G1, Concurrent Mark Sweep, parallel

scavenge garbage collector, etc)
8.	 Pure Java Byte code running on 32 bit JVM works perfectly fine on 64 bit platform
9.	 Functional interfaces & lambda expressions introduced in Java 8 makes code writing an easy affair.

Specifically, dealing with Collections is fun in Java 8. For example, if you want to sort a collection of people
with last name, first name and e-mail (ignoring the case for e-mail), then the following code will do it all
Stream<Person> people = Stream.of(new Person(), ...);
people.sorted(Comparator.comparing(Person::getLastName)
 .thenComparing(Person::getFirstName)
 .thenComparing(Person::getEmail, Comparator.nullsLast(String.CASE_INSENSITIVE_ORDER)))
 .forEach(System.out::println);

Java Cons
1.	 Is not a good fit for desktop applications because of heavy memory footprint and huge VM startup time

compared to ay C/C++ written application
2.	 Normal Java is not good for real time systems because of "stop the world garbage collector pauses".

Q 5. What is difference between 32 bit and 64 bit versions of Java?

The Java language specifications are same for both the platform i.e. int will remain to be 4 bytes signed two's
complement, char will remain single 16-bit Unicode, long will remain 64-bit signed two's complement, and so
on. Hence any Pure Java code will not see any difference provided external native calls are not used. All that
changes is the amount of addressable memory (good) and the amount of memory per Object (not that good).
The size of the reference variables doubles from 32 bit to 64 bit, thus all the reference variable will take double
the size when running on 64 bit JVM.
Theoretically, there are no class file differences between code compiled with the 32 bit and 64 bit versions of
the same revision of Java.
For 32 bit JVM, the maximum memory is limited to 4GB, the memory limit for 64 bit JVM is very high. But more
JVM memory may cause larger System wide GC pauses, so the size of JVM should be decided keeping this
factor into account.

Please also note that 64 bit JVM requires more memory compared to 32 JVM for the same application
because now each reference starts consuming 64 bit instead of 32 bit i.e. management cost in 64 bit version is
higher than the 32 bit version. However, newer JVMs offer object pointer compression1 techniques which can
significantly reduce the space required by 64 bit JVM.

1	 http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html

 18Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 6. What are four basic principles of OOP?

There are 4 major principles that make an language Object Oriented. These are Encapsulation, Data
Abstraction, Polymorphism and Inheritance.

Encapsulation
Encapsulation is the mechanism of hiding of data implementation by restricting access to public methods.

Abstraction
Abstract means a concept or an Idea which is not associated with any particular instance. Using abstract class/
interface we express the intent of the class rather than the actual implementation. In a way, one class should
not know the inner details of another in order to use it, just knowing the interfaces should be good enough.

Inheritance
Inheritances expresses "is a" relationship between two objects. Using Inheritance, In derived classes we can
reuse the code of existing super classes.

Polymorphism
It means one name many forms. It is further of two types - static and dynamic. Static polymorphism is achieved
using method overloading and dynamic polymorphism using method overriding.

Question: What is aggregation, how is it different from composition ?
Both of these are special type of association and differ only in weight of relationship.
Composition is stronger form of "is part of" relationship compared to aggregation "has a".
In composition, the member object can not exist outside the enclosing class while same is not true for
Aggregation.

Q 7. What are the key paradigms for Developing the Clean Object Oriented Code?

1.	 Program to an Interface (or the Super Type) not the implementation.
2.	 Interacting Classes should be loosely coupled among themselves.
3.	 Code should implement tight encapsulation. Use of public and static variables should be avoided

whereever possible, they introduce coupling and make testing of classes tough. Avoid the Singleton Design
pattern whereever possible.

4.	 Always reuse the code using Inheritance, Composition and Utility Methods. Strictly follow the Do not
Repeat Yourself (DRY) principle.

5.	 Has-A relationship is better than Is-A relationship because it offer more flexibility, see Decorator Design
Pattern for more details.

6.	 In case of multi-threaded applications, use immutable objects to represent the state.
7.	 Make proper use of Design Patterns wherever possible.
8.	 Use up to date software dependencies & make best use of latest technology available to us.

Q 8. What is Role of Requirement Understanding in software development process?

We should not put our precious effort in developing an application where requirement is not clear to the
developer. We must ask relevant questions from the concerned person (Business Analyst, Interviewer,
User, etc) to resolve all our ambiguities. It could go really bad if we are not clear of software requirement, for
example lets consider these two scenarios -

 19Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Scenario 1 (Interview scenario, hypothetical)
Business Analyst : Design an efficient Java Restful Service to sort a huge set of data.

Developer : What that data looks like and how much is the volume, where is it stored ?
Business Analyst : Data consists of integers, volume could go as high as 4 GB residing in a file. User will
upload the file into the server and should get a sorted file in return.

Developer : What is the range of Numbers that need to be sorted, will there be duplicates ?
Business Analyst : That data will consist of small numbers, all between range of 0 < number < 1 million, but
yes there will be lots of duplicates

Developer : What are the hardware specs for hosting this service ?
Business Analyst : It will be 4 GB RAM, 8-core cpu, 160GB Disk machine, with a cluster of four such
machines

Developer : What are the Time and Space requirements for this service ?
Business Analyst : It should run in minimal time possible and there could be multiple such requests running in
parallel.

So we can see how the requirement evolves after raising the relevant questions. Before asking these
questions developer could have implemented any sorting algorithm for this requirement without keeping in
mind the parallel processing, space requirements, etc.

So the Design for such a problem would be -
1.	 Choose proper sorting algorithm - as data consists of integer between confined range which is smaller

compared to number of data items, Counting Sort is the best fit for this scenario.
2.	 As there are multiple cores in the cpu, so parallel processing can be a utilized after doing some benchmark

on the test data. Java offers very good support for parallel processing, checkout for Parallel Stream &
Parallel Array Operations(Java 8), or Fork Join Pool, etc. Also as there are multiple machines available we
need to design a distributed application.

3.	 As the data could be larger than the memory size of single machine, we might need to opt for poly phase
sorting, where more than one pass will be required to sort the data, or even external sort could be checked
out.

4.	 We should maintain a concurrency level in the application, incase multiple users submit the request it
should not result in OutOfMemory Error.

Scenario 2 (Real time scenario in production environment)
Customer placed an enhancement request in an application to export & import a tabular data into Excel Sheet

The Dev team went ahead and provided the asked functionality without introspecting the real business cause
behind this requirement, later on came the real picture -
User actually wanted to manipulate the system data using some macro's in excel sheet and then wanted to
upload the same to the server, if proper questions had been asked the design would be different.

Whatever manipulation user wanted to perform, could have easily be done inside the server using Java
methods itself, so there was no real need for this change request raised by the user.

 20Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 9. What is Logarithm? Why is it relevant in Software Development?

A logarithm1 tells what exponent (power) is needed to make a certain number. In a way it is opposite of
exponentiation. For example,
	 log2 (8) = 3		 and	 23 = 8
	 log10 (1000) = 3	 and	 103=1000

Number Logarithm (base 10)
1 0

10 1
100 2
1000 3
10000 4

100000 5

Why do we need Logarithm?
Logarithm converts big number values into smaller, human readable format.
•	 It is easy to handle small numbers compared to very large numbers, when our motive is just to compare

them. Logarithm converts big values to small numbers.
•	 It makes multiplication and division of large numbers easy because adding logarithms is the same as

multiplying and subtracting logarithms is same as dividing.

In pre modern era, when calculators were not there, logarithm tables were used for division and multiplication
of large astronomical numbers.

Logarithm has the below mathematical properties
Sum of logs = log of product
log10(100) + log10(1000) = log10(100,000)
i.e. 2 + 3 		 = 5

Subtraction of logs = log of division
log10(1000) - log10(10) = log10(100)
i.e. 3 - 1 	 = 2

Notes
•	 Logarithm was used in India in ancient times around 2 BC to express astronomical units. It is known as

Laghuganak (लघुगणक) in Hindi.
•	 Logarithmic spirals are common in nature. Examples include the shell of a nautilus or the arrangement of

seeds on a sunflower.
•	 The Richter scale measures earthquake intensity on a base 10 logarithmic scale.
•	 In astronomy, the apparent magnitude measures the brightness of stars logarithmically, since the eye also

responds logarithmically to brightness.
•	 In Divide and Conquer algorithms (Binary Search, Data Partitioning, etc), the problem set is halved in each

iteration which results in logarithmic Big O (log n) Time Complexity.

1	 http://simple.wikipedia.org/wiki/Logarithm

 21Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 10. What do you understand by Big O notation, why is it important in software de-
velopment ?

Big O Notation1 is a mechanism used to measure the relative efficiencies of Algorithms in terms of Space and
Time. It makes us understand how execution time & memory requirements of an algorithm grow as a function
of increasing input size. In this notation, O stands for the Order of magnitude.

Constant O(1) - a program whose running time's order of growth is constant, executes a fixed number of
operations to finish the job, thus its running time does not depend on N.

Linear O(N) - a program that spends a constant amount of time processing each piece of input data and thus
running time is proportional to the N.

Logarithmic O(log n) - a program where on every subsequent iteration, the problem size is cut by half, for
example - Binary Search.

Following are the examples of Big O, in increasing order of their magnitude.
Big O Notation Name Example
O (1) Constant-time Searching from a HashMap, check a number for even/odd
O (log n) Logarithmic Find an item inside sorted array using Binary Search
O (n) Liner Printing all elements from an array
O (n log n) Log Linear Sorting using Merge Sort
O (n2) Quadratic Bubble Sorting Algorithm
O (2n) Exponential Shortest Path Problem Djigstraw Algorithm
O (n!) Factorial Solving Travelling Sales Man Problem

Importance of Big O
We should always keep time efficiencies in mind while designing an algorithm for a data structures, otherwise
there could be severe performance penalties for using wrong algorithm for a given scenario.

Base of Logarithm is irrelevant in Big O Notation
The base of algorithm is not relevant with respect to the order of growth, since all logarithms with a constant
base are all related by a constant proportion, so log N is used when referring to the order of growth regardless
of the base of Algorithm.
Number -> 1,10,100,1000
Log2 -> 0, 2.3, 4.6, 6.9

Time efficiency in Big O notation for few Java Collections
ArrayList (ignoring the time taken by array resize operation)
O(1) for add, size and get
O(n) for toString() method

PriorityQueue
O(1) for peek, element and size
O(log n) for offer, poll, remove() and add
O(n) for remove(Object) & contains(Object)
HashMap & ConcurrentHashMap (with no collisions)
O(1) for get operation
1	 http://en.wikipedia.org/wiki/Big_O_notation

 22Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

O(1) for put operation

LinkedList
O(1) for removal and O(1) for add & poll method
O(n) for toString() method

Q 11. How would you determine the Time Complexity of a given algorithm, are there
any general guidelines?

There are few rules which can help us in the calculation of overall running time of a given piece of code.

1.	 Consecutive Statements (Add the Complexity)
We should add the time complexity of each statement to calculate the total time complexity. For example if we
have 3 lines of code with O(1), O(log n) and O(n) complexity respectively, then the total time complexity would
be O(1)+O(log n)+O(n) = ~O(n)

In case of if-else condition, we should include the time complexity of condition and if or else part, whichever is
larger.

2.	 Iterations and Loops - for, while and do-while (Multiply the Complexity)
Total time complexity can be calculated by multiplying the Time Complexity of individual statement with the
number of iterations. for example, in the below code

for(int i=0;i<N;i++){ // N iterations
	 PriorityQueue.offer(i); // O(log k)
}

Time Complexity = O (log k) x O(n) = O(n log k)

In case of nested loops (Multiply the Complexity)
We should start analyzing from the inner most loop first and then start outwards. Time complexity is
calculated by multiplying the running time of inner most loop with the outer loops.

for(int i=0;i<N;i++){ // N iterations
	 for(int i=0;i<N;i++){ // N iterations
		 PriorityQueue.add(i); // Time Complexity = O (log k) where k=number of elements in priority queue
	 }
}

Time Complexity = O (log k) x O (n) x O(n) = O (n2 log k)

3. Logarithmic Time Complexities (Logarithmic Complexity)
In certain scenarios, the problem size is cut by 1/2 on each subsequent iteration and the resulting time
complexity is O(log n), for example

for(int i=1;i<N;){ // N iterations
	 list.add(i); // O(1) or constant
	 i=i*2; // this will cut the problem size by 1/2 on each invocation
}

Time Complexity = constant x O(log n) = O(log n)

 23Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 12. What is a sorting algorithm ? List down sorting algorithms by their time &
memory complexity in Big O notation ? When do we call a sorting algorithm 'Stable'?

Sorting is an algorithmic technique to put all the collection elements in certain order1 i.e. numerical order,
lexicographical order (dictionary order), etc. Sorting is very helpful for solving real world problems for example,
data analysis requires searching which depends upon sorted input data.

Classification of Sorting Algorithms
There can be different criteria for sorting algorithm classification, for example -
1. Comparison based vs non-comparison based algorithms
Comparison Based Sorting Non Comparison (Integer Sort, etc)
Requires Comparator is required to compare items Faster than comparison algorithms because

these algorithms utilizes integer arithmetic on
keys

Examples Quick Sort, Merge Sort, Heap Sort,
Tree Sort, Selection Sort, Bubble Sort,
Insertion Sort, etc

Counting Sort, Radix Sort, Bucket Sort,
Polyphase Sort, etc.

Performance Lower bound is O (n log n) Lower bound is O (n)
Memory O (1), In Place is possible O (n)

2. Type of Memory - Internal Sorting algorithms and External Sorting algorithms
Internal Sorting External Sorting (Distributed Algorithms)
Requires Internal sorting takes place in the main

memory, utilizing the Random Access
Nature of the main memory. Sufficient
Main Memory should be available for the
input data.

Used when the input data is too big for the
Main Memory of the machine. Interim results
are stored on the external storage (Hard Drive,
Main memory of other computer, etc)

Suitable
Algorithms

Quick Sort, Merge Sort, Heap Sort, Tree
Sort, Selection Sort, Bubble Sort, Insertion
Sort, Counting Sort, etc

Merge Sort, Radix Sort, Bucket Sort, Polyphase
sort, etc.

Performance Faster due to random access of Main
Memory

Slower (depends on type of external storage,
seek time, number of reads and writes to
memory)

Advantage Faster Distribution sorting algorithms i.e. individual
subsets are separately sorted on different
processors, then combined.

Example Sorting 1 million integers on 4 GB RAM
machine

Sorting 4 Billion integers using 10 MB RAM and
a Hard Disk (or cluster of such machines)

3. Stable vs unstable sorting algorithms
An algorithms is said to be stable if it maintains the relative order of records where keys are equal. For equal
Keys, Stable sort preserves the Order, so that if one element came before the other in input, it will also come
before the other in output.
For example, suppose the following key-value pair need to be sorted based on key in ascending order
INPUT		 -->	 [(2,3) 	 (1,2)	 (1,3)	 (3,1)]

Now there are two solution possible for the first two elements

1	 http://en.wikipedia.org/wiki/Sorting_algorithm

 24Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

OUTPUT1	 -->	 [(1,2)	 (1,3)	 (2,3)	 (3,1)]	 --> stable sort because order is maintained
OUTPUT2	 -->	 [(1,3)	 (1,2)	 (2,3)	 (3,1)]	 --> unstable sort because order changed from the original
Examples of Stable Sort algorithms are : Binary Tree Sort, Bubble Sort, Merge Sort, Insertion Sort, etc
Unstable Sorting Algorithms : Heap Sort, Selection Sort, Quick Sort

4. Computation complexity of swaps (In Place algorithms)
Certain algorithms allows in memory swap of elements to perform the sorting thereby offering O (1) space
complexity. Example algorithms that allows In Place sorting are - bubble sort, selection sort, insertion sort,
heap sort and shell sort. Quick sort is kind of in place but requires O (log n) space to keep track of recursive
calls as a part of divide and conquer strategy thus it can not be called In Place algorithm.

5. Adaptive Sort
An algorithm is called adaptive if it takes advantage of existing order in its input thereby reducing the overall
sorting time. Adaptive versions exists for heap and merge sort. For example, Java 8's iterative merge sort
method is adaptive to an extent that it requires approximately n comparisons if the input is nearly sorted.

Algorithms Summary
Below table assumes total n items to be sorted, with keys of size k, digit size d and range of numbers r
Algorithm Average Time

Complexity
Worst Time
Complexity

Space
Complexity

Stable Comparison
Based ?

Suitable for
Memory

Quicksort O (n log n) n2 log n No Yes Internal
Binary Tree Sort O (n log n) n log n n Yes Yes Internal
Merge Sort O (n log n) n log n n Yes Yes External
Selection Sort O (n2) n2 1 (In Place) No Yes Internal
Bubble Sort O (n2) n2 1 (In Place) Yes Yes Internal
Heap Sort O (n log n) n log n 1 (In Place) No Yes Internal
Insertion Sort O (n2) n2 1 (In Place) Yes Yes Internal
Radix Sort O n.(k/d) n.(k/d) n+2d No No External
Counting Sort O (n+r) n+r n+r Yes No Internal

Question: Do you know what Sorting algorithm JDK uses for Java's Collections.sort(List<E>) method?
Java 8's Collections.sort(List<E>) uses Iterative merge sort algorithm, it requires fewer than n log(n)
comparisons when the input array is partially sorted (adaptive) and this algorithm is guaranteed to be stable in
nature.

Sorting Examples in Java 8
1. Sort Array of Strings ignoring the case and print them to System out

public void sortStrings() {
 String[] names = {"One", "Two", "Three", "Four", "Five", "Six"};
 Stream.of(names).sorted(String::compareToIgnoreCase).forEach(System.out::println);
}

 2. Sort String based on their length
private void sortStringsBasedOnLength() {
 String[] names = {"One", "Two", "Three", "Four", "Five", "Six", "Seven"};
 Stream.of(names)
 .sorted((o1, o2) -> Integer.compare(o1.length(), o2.length()))
 .forEach(System.out::println);
}

 25Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

3. Parallel Sort employees by hire date and print them to console
private void sortEmployees(List<Employee> employees){
 employees.parallelStream()
 .sorted((o1, o2) -> o1.getHireDate().compareTo(o2.getHireDate()))
 .forEach(employee -> System.out.println("employee = " + employee));
}

4. Shortcut method for last example -
private void sortEmployees2(List<Employee> employees) {
 employees.parallelStream()
 .sorted(Comparator.comparing(Employee::getHireDate))
 .forEach(employee -> System.out.println("employee = " + employee));
}

5. Multiple Sort Criteria - Sort employees by first name and then by last name and print output to console
public void multiple_sort(List<Employee> employees) {
 Comparator<Employee> byFirstName = (e1, e2) -> e1.getFirstName().compareTo(e2.getFirstName());
 Comparator<Employee> byLastName = (e1, e2) -> e1.getLastName().compareTo(e2.getLastName());
 employees.stream()
 .sorted(byFirstName.thenComparing(byLastName))
 .forEach(e -> System.out.println(e));
}

Counting Sort Algorithm [Integer Sorting with runtime O (n)]
Counting sort is a non-comparison integer sorting algorithm that works when the minimum and maximum value
of data are known. It is faster than comparison based sorting algorithms because it utilizes integer arithmetic
on keys. Counting sort is efficient only if the range of input data (say 10-10000) is not significantly greater
than the number of items to be sorted (10k), otherwise the comparison based sorting algorithm yield better
performance.
Counting sort is Stable sorting with Time Complexity = O (n + k) where n = number of elements and k = range
of elements
Pseudo Algorithm
Let us sort this data array using Counting Sort -
Input Data 1 4 1 2 6 5 2

1.	 Take a count array to store the count of each unique number
Index 0 1 2 3 4 5 6
Count 0 2 2 0 1 1 1

2.	 Modify the count array to store the prefix sum of its elements. Prefix sum is the cumulative sum of a
sequence of numbers x0, x1, x2 ... is a second sequence of numbers y0, y1, y2 ..., the sum of prefixes
(running totals till a given array position) of the input sequence. This gives us the position of each element
in the output array i.e. the total number of elements occurring before the current item in the sorted output.
This is also called histogram of counts.
Index 0 1 2 3 4 5 6
Prefix Sum 0 2 4 4 5 6 7

3.	 For each element in the input sequence, calculate its position from the counting array followed by
decreasing the count by one in counting array. Position of 1 is 2, decrease count by 1 to place next data 1
at index 1 smaller than this, and so on position of 4 is 5 in the output array

 26Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Sorted Output 1 1 2 2 4 5 6
Java 8 example for Counting Sort

import java.util.Random;
public class CountingSort {
 public static void main(String[] args) {
 Random random = new Random(System.currentTimeMillis());
 int min = 0;
 int max = 1000;
 int[] input = random.ints(min, max).parallel().limit(100000000).toArray();
 CountingSort countingSort = new CountingSort();
 countingSort.sort(input, min, max);
 }

 public int[] sort(int[] input, int min, int max) {
 int counting[] = new int[max - min + 1];
 //Compute the count of each item
 for (int number : input) {
 ++counting[number - min];
 }

 //Compute the total number of items occurring before the current item in sorted output (histogram)
 for (int i = 1; i < counting.length; i++) {
 counting[i] += counting[i - 1];
 }

	 //Fill the output array with correct number of zeros, ones, twos and so on.
 int[] output = new int[input.length];
 for (int i : input) {
 output[counting[i - min] - 1] = i;
 --counting[i - min];
 }

	 return output;
 }

Layman usage in real life - A shopkeeper wants to sort the receipts at the year end from a box, he will simply
take a calendar and start putting receipts against the dates.

What is Prefix Sum
Prefix sum is the cumulative sum of a sequence of numbers x0, x1, x2 ... is a second sequence of numbers y0,
y1, y2 ..., the sum of prefixes (running totals till a given array position) of the input sequence -
y0 = x0
y1 = x0 + x1
y2 = x0 + x1 + x2
y2 = x2 + y1

Example of prefix sum for a given input array -
Input Sequence 1 2 3 4 5 6 7
Prefix Sums (running totals) 1 3 6 10 15 21 28

Other Variants of Source Code -

public static void countingSort(int[] array, int min, int max) {

 27Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

 int[] count = new int[max - min + 1];
 for (int number : array) {
 count[number - min]++;
 }
 int z = 0;
 for (int i = min; i <= max; i++) {
 while (count[i - min] > 0) {
 array[z] = i;
 z++;
 count[i - min]--;
 }
 }
}

public static void countingSort2(int[] a, int low, int high) {
 int[] counts = new int[high - low + 1]; // this will hold all possible values, from low to high
 for (int x : a)
 counts[x - low]++; // - low so the lowest possible value is always 0

 int current = 0;
 for (int i = 0; i < counts.length; i++) {
 Arrays.fill(a, current, current + counts[i], i + low); // fills counts[i] elements of value i + low in current
 current += counts[i]; // leap forward by counts[i] steps
 }
}

Note: we know that, given an array of integers, its maximum and minimum values can be always found; but if
we imagine the worst case for an array of 32 bit integers, we see that in order to hold the counts, we need an
array of 232 elements, i.e., we need, to hold a count value up to 232-1, more or less 4 Gbytes. So the counting
sort is more practical when the range is (very) limited and minimum and maximum values are known a priori.
(Anyway sparse arrays may limit the impact of the memory usage)

Bucket Sort Algorithm (Integer Sort with Time Complexity O (n) + distributed algorithm)
It is a distribution sort algorithm that works by partitioning (divide and conquer) an array into a number of
buckets, with each bucket sorted individually on the same machine or another using a different sorting
algorithm or by applying the same algorithm recursively.

A typical Bucket Sort program looks like -
import java.util.*;

public class BucketSort {
 public static void sort(int[] a, int maxVal) {
 int[] buckets = new int[maxVal + 1];
 for (int i = 0; i < buckets.length; i++) {
 buckets[i] = 0;
 }
 for (int i = 0; i < a.length; i++) {
 buckets[a[i]]++;
 }
 int outPos = 0;
 for (int i = 0; i < buckets.length; i++) {
 for (int j = 0; j < buckets[i]; j++) {
 a[outPos++] = i;
 }

 28Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

 }
 }

 public static void main(String[] args) {
 int maxVal = 7;
 int[] data = {7, 4, 1, 4, 1, 0, 5, 2, 3, 1, 4};
 System.out.println("Before: " + Arrays.toString(data));
 sort(data, maxVal);
 System.out.println("After: " + Arrays.toString(data));
 }
}

Bucket Sort works as follows :
1.	 An array of buckets is created with size equals maxValue in the raw data.
2.	 Each of the bucket is initially set to zero.
3.	 A pass is made through the input array, counting the number of occurrence of each value between 0 and

maxValue-1, store this count in the bucket's respective index.
4.	 Sorted result is produced by first placing the required number of zeros in the array, then required number of

ones, followed by twos, threes and so on, up to maxVal - 1.

If the number of buckets can't be made equal to the max value in the input data, then we can use the below
modified algorithm to sort the input data

public static int[] bucketSort(int[] array, int bucketCount) {
 if (bucketCount <= 0) throw new IllegalArgumentException("Invalid bucket count");
 if (array.length <= 1) return array; //trivially sorted

 int high = array[0];
 int low = array[0];
 for (int i = 1; i < array.length; i++) { //find the range of input elements
 if (array[i] > high) high = array[i];
 if (array[i] < low) low = array[i];
 }
 double interval = ((double) (high - low + 1)) / bucketCount; //range of one bucket

 ArrayList<Integer> buckets[] = new ArrayList[bucketCount];
 for (int i = 0; i < bucketCount; i++) { //initialize buckets
 buckets[i] = new ArrayList();
 }

 for (int i = 0; i < array.length; i++) { //partition the input array
 buckets[(int) ((array[i] - low) / interval)].add(array[i]);
 }

 int pointer = 0;
 for (int i = 0; i < buckets.length; i++) {
 Collections.sort(buckets[i]); //mergeSort
 for (int j = 0; j < buckets[i].size(); j++) { //merge the buckets
 array[pointer] = buckets[i].get(j);
 pointer++;
 }
 }
 return array;
}

 29Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 13. Why Prime Numbers are given much importance in writing certain algorithms
like hashcode()?

Prime numbers are very useful for generating hashcode, RSA algorithms, random number generators.
String class's hashcode method multiplies its hash value by prime number 31 :
	

	 int hash =0;
 for (char ch : str.toCharArray()) {
 hash = 31 * hash + ch;
 }

A number is either prime number or a composite number (can be factorized into prime numbers). Prime
numbers are always unique and can not be divided by any other number except 1. The product of prime
number with any other number has the best chances of being unique (though not as unique as Prime number
itself) due to the fact that prime number is used to compose it. This property makes them very suitable for use
in hashing function so as to obtain fair distribution in its hashcode output and thus achieving low collisions.
Multiplying by the prime number will not tend to shift information away from the low end, as it would multiplying
by a power of 2, thus achieving a fair randomness.

Q 14. What is left shift <<, right shift >> and Unsigned right shift >>> operator in
Java? How are these useful?

All Integer in Java are of signed type (negative numbers are represented in 2's complementary notation),
hence Java provides both signed and unsigned bit shift operators to support signed and unsigned shift of bits.

Left Shift Operator << (Signed)

It shifts the underlying bits of an integer to left by the given distance filling the right most bits with zero always.
X = a << b means the same as X = a*2^b
a is given Number and b is the shift amount.
Here is an example of 8 bit representation of number 5. and when we left shift it's bit by 3 then the right most 3
bits are filled by zero.
And the number becomes
5*23 = 40.
The same thing happens for negative numbers which are represented in 2's complementary notation. for
example -5 becomes -40 as follow
11111011 becomes 11011000

Right Shift Operator >> (Signed)

Shifts the bits to left by specified amount maintaining the sign of underlying integer i.e.

It fills the left most bits with 0 if the number is positive otherwise with bit 1.
X = a >> b means same as arithmetic operation X = a / (2b)

Unsigned right shift Operator >>> (does not respect sign of Number, does not preserve the 1st bit)

0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1
>> by 3

0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0<< by 3

 30Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0>>> Shift by 1

Unsigned right shift operator >>> is effectively same as >> except that it is unsigned, it fills the left most

positions with bit 0 always. (Irrespective the sign of the underlying number)
For example,
1100 1100 >>> 1 becomes 0110 0110 (shown in diagram)
10000000 >>> 3 becomes 10000 in binary
256 >> 3 becomes 256 / 2^3 = 16.

Notes
•	 Eight-bit type byte is promoted to int in shift-expressions. To mitigate such effects we can use bit masking

to get the result as byte for example, (b & 0xFF) >>> 2. Casting can also help achieving the same.

•	 Why there is no need of unsigned left shift ?
Because there is no need to have that. Sign bit is the right most bit of an integer and shifting bits to right
only require the decision of sign. Logical and arithmetic left-shift operations are identical so << signed
solves the purpose of unsigned left shift as well.

•	 Uses of bitwise operators: bitwise operators are used for few very efficient mathematical calculations
in Big O(1). Bloom Filter, fast mathematical calculations, hashing functions of HashMap are some of
applications.

 31Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 15. What is 2's complement notation system for Binary Numbers?

It is a number format for storing negative numbers in Binary1. This system is the most common method of
representing signed numbers on computers. An N-bit two's-complement numeral system can represent every
integer in the range −(2N−1) to +(2N−1 − 1)

Why 2's Complement ?

The two's-complement system has the advantage that the fundamental arithmetic operations of addition,
subtraction, and multiplication are identical to those for unsigned binary numbers (as long as the inputs are
represented in the same number of bits and any overflow beyond those bits is discarded from the result).
This property makes the system both simpler to implement and capable of easily handling higher precision
arithmetic. Also, zero has only a single representation, obviating the subtleties associated with negative zero,
which exists in ones'-complement systems.

Calculating 2's complement

Positive numbers are represented as the ordinary binary representation in 2's complementary notation.
The most significant bit (leftmost bit) is always 0 for positive number, otherwise number is negative.

To get 2's complement of a negative numbers, the bits are inverted (using bitwise NOT operator) and then
value of 1 is added to get the final result.

For example, Let's convert 5 to -5 using 2's complement notation

Using 8 bit system, number 5 is represented as
00000101
Now invert all the bits (1's complement)
11111010
Finally add 1 to get the result
11111011

So this is binary representation of -5 in 2's complement notation.

To convert it back to a Positive Number, calculate 2's complement of a negative number

For example, lets convert -5 to 5
11111011 represents -5

Invert all the bits
00000100

Then add 1 to get the result
00000101

That is +5.

1	 http://en.wikipedia.org/wiki/Two's_complement

 32Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 16. How Heap space is divided in Java. How does Garbage Collector cleans up the
unused Objects ? Why shouldn't we use System.gc() command in production code?

Memory taken up by the JVM is divided into Stack, Heap and Non Heap memory areas. Stacks are taken up
by individual threads for running the method code while heap is used to hold all class instances and arrays
created using new operation. Non-heap memory includes a method area shared among all threads and is
logically part of the heap but, depending upon the implementation, a Java VM may not invoke GC on this part.

Java HotSpot VM Heap Memory is divided into Generations1

The Young generation - This further consists of one Eden Space and two survivor spaces. The VM initially
assigns all objects to Eden space, and most objects die there. When VM performs a minor GC, it moves any
remaining objects from the Eden space to one of the survivor spaces.

Tenured/Old Generation - VM moves objects that live long enough in the survivor spaces to the "tenured"
space in the old generation. When the tenured generation fills up, there is a full GC that is often much slower
because it involves all live objects.

Metaspace - The metaspace holds all the reflective data of the virtual machine itself, such as class metadata,
classloader related data. Garbage collection of the dead classes and classloaders is triggered once the class
metadata usage reaches the “MaxMetaspaceSize”.

Never invoke GC programmatically from within your code
Invoking System.gc() may have significant performance side effects on the application. GC by its design is
intelligent piece of code and it knows when to invoke partial or full collection. Whenever there is a need it tries
1	 http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html continued on 33

 33Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

to collect the space from Young Generation First (very low performance overhead), but when we force our JVM
to invoke System.gc(), JVM will do a Full GC which might pause your application for certain amount of time,
isn't that a bad approach then ? Let GC decide its timing.

Memory Spaces
Eden Space (heap): The pool from which memory is initially allocated for most objects.

Survivor Space (heap): The pool containing objects that have survived the garbage collection of the Eden
space.

Tenured/Old Generation (heap): The pool containing objects that have existed for some time in the survivor
space.

Metaspace (non-heap): The pool containing all the reflective data of the virtual machine itself, such as
meta-data of classes, objects (e.g pointers into the heap where objects are allocated) and method objects,
classloader related data.

Code Cache (non-heap): The HotSpot Java VM also includes a code cache, containing memory that is used
for compilation and storage of native code.

Performance Tuning GC2

Set appropriate heap using -Xms and -Xmx VM parameter. Unless you have GC pause problem, you should
give as much memory as possible to the virtual machine.

-XX:+DisableExplicitGC
Disable Sysytem.gc() which cause the Full GC to run and thus causing the JVM pauses.

-verbose:gc
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
This will print every GC details

-XX:NewRatio
The ratio between the young space and the old is set by this parameter. For example, -XX:NewRatio=2,
would make old generation 2 times bigger than the young generation (ratio between the young and tenured
generation is 1:2), or we can say that the young generation is 1/3rd the size of total heap size(young + old)

-XX:SurvivorRatio
This command line parameter sets the ratio between each survivor space and eden. For example,
-XX:SurvivorRatio=6 will make each survivor space one eighth of the young generation. (there are two survivor
space and 6 eden spaces in this case, hence 1/8)

-XX:NewSize=n
Sets the initial size of young generation, it should typically be 1/4th of total heap size. The bigger the young
generation, the less frequent the minor collection happens. (though for a bounded heap size, it may cause
more frequent major collections)

-XX:MaxMetaspaceSize=128m

2	 http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#generation_sizing.young_gen.survivors

 34Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Sets the maximum metaspace size (non-heap) to 128 MB which stores Classes, methods and other metadata.

We should carefully design the object pool because they fool the garbage collector by keeping the live
reference to the unused objects, thus causing application to demand more memory.
Default Values as of JDK 1.6 on server VM

New Ratio = 2 (old generation is 2 times bigger than young generation)
New Size = 2228K
Max New Size = Not limited
Survivor ratio = 32 (survivor space will be 1/34th of young generation)

The rules of thumb for server applications are3

•	 First decide the maximum heap size you can afford to give the virtual machine. Then plot your performance
metric against young generation sizes to find the best setting.
•	 Note that the maximum heap size should always be smaller than the amount of memory installed on

the machine, to avoid excessive page faults and thrashing.
•	 If the total heap size is fixed, increasing the young generation size requires reducing the tenured

generation size. Keep the tenured generation large enough to hold all the live data used by the application
at any given time, plus some amount of slack space (10-20% or more).

•	 Subject to the above constraint on the tenured generation:
•	 Grant plenty of memory to the young generation.
•	 Increase the young generation size as you increase the number of processors, since allocation can be

parallelized.

Notes
Question: We have a application which creates millions of temporary large StringBuilder Objects from
multiple threads. But none of such object is really required after extracting useful information from
them. Somehow we started facing frequent gc pauses. What could be the problem, and how would you
approach it?
Solution
Performance tuning GC may solve this problem to some extent. Let's first understand memory requirements
of this application. This application create lots of short lived objects - thus we would require a large young
generation for lowering the frequency of minor garbage collection. If our young generation is small, then the
short lived objects will be promoted to Tenured Generation and thus causing frequent major collection. This can
be addressed by setting appropriate value for -XX:NewSize parameter at the JVM startup.
We also need to adjust the survivor ratio so that the eden space is large compared to survivor space, large
value of Survivor ratio should help solve this problem.
We can also try increasing the Heap size if we have sufficient memory installed on our computer.

Sample Settings for increasing Eden Space and New Generation
java -client -XX:SurvivorRatio=12 -XX:NewRatio=2 -XX:NewSize=50m -Xmx256m -Xms64m
-XX:MaxMetaspaceSize=128m -XX:+PrintGCDetails -jar dli-downloader-4.2-jar-with-dependencies.jar

Question: Does GC collects memory from Perm Gen Space ?
Solution : The PermGen space is garbage collected like the other parts of the heap. PermGen contains meta-
data of classes and objects (pointers to heap memory allocation). It also includes ClassLoaders that need to be
manually destroyed at the end of their use.

Question : What are the available tools to give the visual view of the different memory spaces in a

3	 http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#generation_sizing.young_gen.survivors

 35Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

running JVM ?
There are lot of free tools available for troubleshooting memory related problem in a JVM. JConsole and
JVisualVM are two of them that come shipped with every JDK. Below is the screenshot of JVisualVM (with
Visual GC plugin) showing the visual representation of the different memory segments for a running JVM.

VisualVM snapshot with VisualGC plugin

You can always profile an application and see the memory trends and customize the memory allocations
accordingly. That can significantly reduce GC overhead and thus improve the application performance.

How do you interpret GC log message , like the one shown below ?
8109.128: [GC [PSYoungGen: 109881K->14201K(139914K)] 691015K->595352K(1119040K), 0.0454530
secs]

•	 107Mb used before GC, 14Mb used after GC, max young generation size 137Mb
•	 675Mb heap used before GC, 581Mb heap used after GC, 1Gb max heap size
•	 minor GC occurred 8109.128 seconds since the start of the JVM and took 0.04 seconds

 36Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 17. What is difference between Stack and Heap area of JVM Memory? What is
stored inside a stack and what goes into heap?

The biggest difference between Heap and Stack section of memory is the lifecycle of the objects that reside in
these two memory locations

Memory of Stack Section is bound to a method context and is destroyed once a thread returns from the
function i.e. the Stack objects exists within the scope of the function they are created in.

On the other hand Heap objects exists outside the method scope and are available till GC recollects the
memory.

Java stores all objects in Heap weather they are created from within a method or class. Escape analysis can
be enabled in compiler to hint JVM to create method local objects in stack if the objects does not escape the
method context. All class level variables and references are also stored in heap so that they can be accessed
from anywhere. Metadata of classes, methods, etc also reside in Heap's PermGen space.

The Stack section of memory contains methods, local variables and reference variables and all os these are
cleared when a thread returns from the method call.

Question: An ArrayList is created inside a method, will it be allocated in Stack section or Heap section
of JVM Memory?

public void foo(){
 ArrayList<String> myList = new ArrayList<>();
}

Answer : All Java Objects are created in Heap memory section, so the ArrayList will be created on the heap.
But the local reference (myList) will be created in the Stack section of memory. Once the method call is finished
and if myList variable is not escaped from this method then GC will collect the ArrayList object from heap.

As of JDK 1.6_14, escape analysis1 can be enabled by setting the appropriate JVM flag (java
-XX:+DoEscapeAnalysis) which hints the compiler to convert heap allocations to stack allocations if the method
local objects do not escape the method scope.

In the following code, if we enable the escape analysis, then the Object Foo may be created on Stack, resulting
in significant performance gain due to lesser GC activity.

public static void main(String[] args) {
 System.out.println("start");
 for (int i = 0; i < 1000 * 1000 * 1000; ++i) {
 Foo foo = new Foo();
 }
 System.out.println(Foo.counter);
}

1	 http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html

 37Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 18. What is a Binary Tree? Where and why is this used in Java Programs?

Binary Tree is a tree data structure made up of nodes. Each node has utmost two children.

Why to prefer Binary Tree over any other linear data structure ?
Binary trees are a very good candidate (not the best) for storing data when faster search/retrieval is required
based on certain criteria. It does so by storing its elements in sorted order offering low time complexity for
retrieval operations compared to any other linear data structure. Any un-sorted collection can be inserted into
Binary Search Tree in O (n log n) time complexity. Though the insertion time is increased per element from
O(1) in Random Access array to O(log n) in Binary Search Tree, but we get a major advantage when we want
to search/retrieve a particular element from the tree data structure.

Worst-case Search time complexity is logarithmic in a balanced Binary Search Tree i.e. Binary tree cuts
down the problem size by half upon every subsequent iteration.

Balanced Binary Tree
Binary Tree is useful only when the tree is balanced, because only in that case a Binary Tree provides O(log
n) search complexity, otherwise a binary tree will behave more like a linear data structure with O(n) time
complexity for searching. A tree is called balanced when the height of the tree is logarithmic compared to
number of its elements.

Binary Search Tree
Left child of root is less in value than the right child. And the same is true for left and right sub tree in case of
Binary Search Tree. BST is build for efficiently sorting & searching. In Order Traversal of a Binary Search Tree
results in Ascending Order sorting of its elements.

Binary Tree Implementations used in Java 8
Red-black-tree (TreeMap) and binary heap (PriorityQueue) implementation of Binary Tree is provided by Java
Collection Framework, both of which are thoroughly tested and easy to use.

Red-black-tree is a height balanced binary tree where root is colored black and every other element is colored
either black or red with the following two rules,
1.	 If an element is colored red, none of its children can be colored red.
2.	 The number of black elements is the same in all paths from the root to the element with one child or with no

children.

It is useful for maintaining the order of elements in the collection based on the given comparator. It also provide
efficient mechanism to find the neighboring elements which are either big or small compared to given number,
because those numbers are stored physically closer in the data structure.

Q 19. Discuss implementation and uses of TreeSet Collection?

Skill Set - Sorting Algorithm & Data Structure (Red Black binary tree)

TreeSet is a navigable set implementation based on TreeMap. All the elements are ordered using their Natural
ordering or by comparator provided at TreeSet construction time.

NavigableSet provides us with methods like first(), last(), floor(), ceiling(), headSet(), tailSet() which can be
used to search the neighboring elements based on element's ordering.

 38Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

TreeMap is Red-Black Binary Search Tree which guarantees logarithmic time for insertion, removal and
searching of an element. All the elements in this collection are stored in sorted order and the tree is height
balanced using Red black algorithm. If two elements are nearby in order, then TreeSet places them closely in
the data structure.

Uses
It is a best collection if we need to search the nearby elements of a given item based on their ordering.

Notes

•	 Note that this implementation is not synchronized. If multiple threads access a tree set concurrently, and at
least one of the threads modifies the set, it must be synchronized externally. This is typically accomplished
by synchronizing on some object that naturally encapsulates the set.

•	 If no such object exists, the set should be "wrapped" using the Collections.synchronizedSortedSet method.
This is best done at creation time, to prevent accidental unsynchronized access to the set:
SortedSet s = Collections.synchronizedSortedSet(new TreeSet(...));

•	 If we are looking for high throughput in a multi-threaded application then we can prefer
ConcurrentSkipListSet which is scalable concurrent implementation of NavigableSet.

•	 Iterator returned by this class are fail-fast.
•	 TreeSet does not allow duplicates, it just replaces the old entry with the new one if both are equal (using

compareTo method)
•	 TreeSet does not preserve the insertion order of its elements.
•	 TreeSet provides guaranteed Big O (log n) time complexity for add(), remove() and contains() method.

Q 20. How does Session handling works in Servlet environment?

Skill Set - Web (HTTP protocol, Servlet)

There are multiple ways to handle session by a server framework. Most often, server uses one of the following
three mechanisms to handle session on server side -

1.	 Storing Cookies on the client side
2.	 URL Rewriting
3.	 Hidden form fields

Servlets use cookies as the default mechanism for session tracking, but in case cookies are disabled on the
client, Server can use URL re-writing for achieving the same. When server calls request.getSession(true), then
server generates and sends JSESSIONID back to the client for all future session references. JSESSIONID will
then be stored by the client and sent back to the server using any of the above mentioned mechanisms.
To ensure that your Servlets support servers that use URL rewriting to track sessions, you must pass all the
URL's used in your servlet through the HttpServletResponse.encodeURL() method, as shown below

out.println("<form actionb ='"+res.encodeURL("/example/htmlpage")+"'>");

This will append the sessionID to the form's action.

 39Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 21. Explain Servlet Life Cycle in a Servlet Container ?

Servlet Life Cycle consists of three main phases - construction, service and destroy. It is controlled by the
container in which servlet has been deployed.
1.	 Construction - if the instance of servlet does not exist, the web container -

i.	 Loads the servlet class.
ii.	 Creates an instance of servlet class.
iii.	 Initializes servlet instance by calling init() method

2.	 Service - invokes the service method, passing request and response objects.
3.	 Destroy - If the container needs to remove the servlet, it finalizes servlet by calling servlet's destroy

method.
public interface Servlet {

public void init(ServletConfig config) throws ServletException;

public void service(ServletRequest req, ServletResponse res) throws ServletException, IOException;

public void destroy();

}

 40Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 22. How can one handle relative context path while coding the web applications?
For example, your web application may be deployed at a different context path in
Tomcat, how will you make sure static/dynamic resources works well at custom
context path ?

There are two main ways to handle relative Context Path -
1.	 Do not provide absolute context path in your dynamic/static web pages. So instead of mentioning absolute

url (that starts with /), use something like this -

static/images/a.gif

../static/images/a.gif

<link href="resources/css/style.css" rel="stylesheet" type="text/css" />

2.	 Use API to handle relative Context Path, for example

Spring MVC Framework
One can use spring tag to access the resources (static/dynamic)

<img src="<spring:url value='/static/images/a.gif'/>"/>

JSP EL
One can use pageContext variable available in session scope. Request contains contextPath variable which
points to the actual context path assigned to web application at the time of deployment.

<link href="${pageContext.request.contextPath}/resources/css/style.css" rel="stylesheet" type="text/css" />
<img src="<%=request.getContextPath()%>/static/images/a.gif"/>

${pageContext.request.contextPath}

In Freemarker
In your view resolver you can add the following property (mvc-dispatcher.xml)

<bean id="viewResolver" class="org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver">
<property name="cache" value="true"/>
<property name="prefix" value=""/>
<property name="suffix" value=".ftl"/>
<property name="requestContextAttribute" value="rc"/>
</bean>

Then in your freemarker template you can get the request context patch like

${rc.getContextPath()}

or, simply as

${rc.contextPath}

 41Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 23. How will you write a Recursive Program?

A general structure of any recursion program is like this :
if (base condition...){
 // return some simple iterative expression
}
else {// recursive case
 //some work before call
 //recursive call
 //some work after call
}

Recursion is helpful in writing complex algorithms in easy to understand manner. But normally iterative
solutions provide better efficiency compared to recursive one because of so much overhead involved in
executing recursive steps.
For example, we would use the following code to calculate the Fibonacci series using recursion

public int fib(int n) {
 if (n <= 1) //Base Condition
 return n;
 else { //Recursive case
 return fib(n - 1) + fib(n - 2);
 }
}

Q 24. How many elements a complete binary tree could hold for a depth of 10?

A binary tree is said to be complete if it is fully populated, so that each node has two child except the child
nodes.
From the figure shown, we can conclude that maximum
Nodes at level 0 = 1
Nodes at level 1 = 2
Nodes at level 2 = 4
Nodes at level n = 2n

So maximum number of nodes nkmax at level k of a
binary tree is nkmax = 2k

And the maximum number of nodes in a Tree with
height (also called depth) h is
Nmax = 1+2+4+...+2h-1 = 2h - 1
or in other words number of Levels= log2(N+ 1)

Hence, we can say
Total Nodes in 1 level tree = 1
Total Nodes in 2 level tree = 3
Total Nodes in 5 level tree = 31

Total Number of nodes in a tree with depth 10 will be = 210 -1 = 1023 nodes

A

B C

E GD F

 42Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 25. Explain working of a hashing data structure, for example HashMap in Java.

HashMap is a hashing data structure which utilizes object's hashcode to place that object inside map. It
provides best case time complexity of O(1) for insertion and retrieval of an object. So it is a best suited data
structure where we want to store a key-value pair which later on can retrieved in minimum time.

HashMap is not a thread safe ADT, so we should provide necessary synchronization if used in multi-threaded
environment.

HashMap is basically an array of buckets where each bucket uses linked list to hold elements.

Initial Capacity
The default initial capacity of a hashmap is 16 (the number of buckets) and it is always expressed in power of
two (2,4,8,16, etc) reaching maximum of 1 << 30 (230)

Put Operation - Big O(1) Time Complexity
When we add a key-value pair to hashmap, it queries key's hashcode. Hashmap uses that code to calculate
the bucket index in which to place the key/value. For example, if hashcode is zero then hashmap will place
the key value in 0th bucket. Hashmap strips down the key's hashcode to fit into the existing count of buckets
using a bitwise hack which is equivalent to the shown
below,

bucket index = hashcode % (number of buckets)

The actual method is implemented as
int indexFor(int hashcode, int length) {
 return hashcode & (length-1);
}

The number of buckets in a hashmap is always
power of two, i.e. 2,4,8,16, etc, otherwise the above
mentioned bitwise method will not work correctly.
Once the bucket is identified, the key-value pair is
added to the List lying at that bucket address.
When multiple objects map to same bucket, we call
that phenomenon Collision.

Get Operation - Big O(1) Time Complexity
get operation takes a key and then calculates the index of bucket using the method mentioned above. Then
that bucket's List is searched for the given key using key's equals() method, and finally the result is returned.

Load factor and Rehashing
Rehashing occurs automatically by the map when the number of keys in the map reaches threshold value.
threshold = capacity* (load factor of 0.75)
In this case a new array is created with more capacity and all the existing contents are copied over to it.

bucket 1

index =0

bucket 2

index=1

Bucket ...

index = ...

bucket N

index=N

<entry 1>

<entry 2>

<entry ...>

<entry N>

<entry 1>

<entry 2>

<entry ...>

<entry N>

HASHMAP

A Typical Hashing Data Structure

 43Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 26. Discuss internal's of a concurrent hashmap provided by Java Collections
Framework.

In Java 1.8, A ConcurrentHashMap is a hashmap supporting full concurrency of retrieval via volatile reads of
segments and tables without locking, and adjustable expected concurrency for updates. All the operations
in this class are thread-safe, although the retrieval operations does not depend on locking mechanism
(non-blocking). And there is not any support for locking the entire table, in a way that prevents all access.
The allowed concurrency among update operations is guided by the optional concurrencyLevel constructor
argument (default is 16), which is used as a hint for internal sizing.

ConcurrentHashMap is similar in implementation to that of HashMap, with resizable array of hash buckets,
each consisting of List of HashEntry elements. Instead of a single collection lock, ConcurrentHashMap uses a
fixed pool of locks that form a partition over the collection of buckets.

Here is the code snippet showing HashEntry class

static final class HashEntry<K,V> {
 final int hash;
 final K key;
 volatile V value;
 volatile HashEntry<K,V> next;
...

HashEntry class takes advantage of final and volatile variables to reflect the changes to other threads without
acquiring the expensive lock for read operations.
The table inside ConcurrentHashMap is divided among Segments (which extends Reentrant Lock), each
of which itself is a concurrently readable hash table. Each segment requires uses single lock to consistently
update its elements flushing all the changes to main memory.

put() method holds the bucket lock for the duration of its execution and doesn't necessarily block other threads
from calling get() operations on the map. It firstly searches the appropriate hash chain for the given key and if
found, then it simply updates the volatile value field. Otherwise it creates a new HashEntry object and inserts it
at the head of the list.
Iterator returned by the ConcurrentHashMap is fail-safe but weakly consistent. keySet().iterator() returns
the iterator for the set of hash keys backed by the original map. The iterator is a "weakly consistent" iterator
that will never throw ConcurrentModificationException, and guarantees to traverse elements as they existed
upon construction of the iterator, and may (but is not guaranteed to) reflect any modifications subsequent to
construction.
Re-sizing happens dynamically inside the map whenever required in order to maintain an upper bound on hash
collision. Increase in number of buckets leads to rehashing the existing values. This is achieved by recursively
acquiring lock over each bucket and then rehashing the elements from each bucket to new larger hash table.

Notes & Further Questions
Question : Is this possible for 2 threads to update the ConcurrentHashMap at the same moment ?
Answer : Yes, its possible to have 2 parallel threads writing to the CHM at the same time, infact in the default
implementation of CHM, at most 16 threads can write and read in parallel. But in worst case if the two objects
lie in the same segment, then parallel write would not be possible.

Question : Can multiple threads read from a given Hashtable concurrently ?
Answer : No, get() method of hash table is synchronized (even for synchronized HashMap). So only
one thread can get value from it at any given point in time. Full concurrency for reads is possible only in

 44Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

ConcurrentHashMap via the use of volatile.

Question: Is Segment in ConcurrentHashMap similar to Bucket ?
Answer : No, in fact Segment is like a mini specialized version of hashtable that contains many buckets. Each
segment holds a single lock, thus no two entries in the segment can be updated by more than one thread at a
time. Definition of Segment as of JDK 1.7 looks like -

static final class Segment<K,V> extends ReentrantLock implements Serializable {
transient volatile HashEntry<K,V>[] table;

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
 HashEntry<K,V> node = tryLock() ? null :
 scanAndLockForPut(key, hash, value);
...

Question: Can two threads read simultaneously from the same segment in ConcurrentHashMap ?
Answer: Segments maintain table of entry list that are always kept in consistent state, thus many threads
can read from the same Segment in parallel via volatile read access. Even the updates operations (put and
remove) may overlap	 with the retrieval operation without any blocking happening.

Question: What enhancements were made to ConcurrentHashMap in Java 8 ?
Answer: few new methods related to concurrency has been added to CHM in Java 8
1.	 putIfAbsent (The entire method invocation is performed atomically)
2.	 compute (The entire method invocation is performed atomically)
3.	 computeIfAbsent (The entire method invocation is performed atomically)
4.	 computeIfPresent (The entire method invocation is performed atomically)
5.	 search (key, value)
6.	 reduce (key, value)
7.	 forEach

All these methods make concurrent programming a lot simpler than before, for example

•	 The below statement will conditionally create a new LongAdder() objects if none existed against the given
word and then increment the counter by One.
map.putIfAbsent(word, new LongAdder());
map.get(word).increment();

•	 The blow statement will print the entire key-value pair from the Hashmap (threshold is parallelism threshold
number beyond which multiple threads will execute the given operation)
map.forEach(threshold, (k, v) -> System.out.println(k + "->" + v));

•	 The below code snippet will increment the counter by one initializing to one if it is null
map.compute(word, (k, v) -> v == null ? 1: v+1);

•	 The below statement is another way of doing the same thing
map.computeIfAbsent(word, k -> new LongAdder()).increment();

•	 The below code snippet will search for the first match where value is greater than 100, returning null if
nothing found
String result = map.search(threshold, (k, v) -> v > 100 ? k : null) ;

 45Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

•	 The below code snippet will count entries that have value > 100
Long count = map.reduceValues(threshold, v -> v > 100 ? 1L : null, Long::sum);

For more details please refer to -
http://www.ibm.com/developerworks/java/library/j-jtp08223/
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Q 27. Why do we need Reader Classes when we already have Streams Classes? What
are the benefit of using a Reader over a stream, in what scenario one should be pre-
ferred.

InputStream and OutputStream operates at byte level (also called byte streams) while Reader and Writer
classes operates at the character level (char streams). Reader class is essentially a wrapper over InputStream
where it delegates the I/O related work to the byte stream and performs the translation of byte to character
using the given character encoding and character set. So Reader class provides a easy mechanism to the
developer to deal with the Character stream with an option to deal with different CharacterSets.

It is possible to convert byte stream to a character stream using InputStreamReader and OutputStreamWriter.

Convert non-Unicode bytes to Unicode Characters using the below
code

FileInputStream fis = new FileInputStream("test.txt");
InputStreamReader isr = new InputStreamReader(fis, "UTF8");

Convert Unicode Characters (from String object) to non-Unicode bytes using below code

static void writeOutput(String str) throws IOException {
 FileOutputStream fos = new FileOutputStream("test.txt");
 Writer out = new OutputStreamWriter(fos, "UTF8");
 out.write(str);
 out.close();
}

InputStreamReader
non-Unicode bytes Unicode characters

OutputStreamWriter
Unicode characters non-Unicode bytes

 46Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 28. Discuss Visitor, Template, Decorator, Strategy, Observer and Facade Design
Patterns?

Visitor Design Pattern
Visitor design pattern is a way of separating an algorithm from an object structure on which it operates. This
results in ability to add new operations to existing object structures without modifying those structures.
For example,
Suppose, A company wants to display the first name of all its employees. In order to achieve a separation
between the data model and the algorithm to display employee, Visitor pattern can be utilized. Moreover if a
new requirement comes in for calculating the total salary of an employee, then it can be easily added without
making any changes to the model.

Similarly
Calculating taxes in different regions on sets of invoices would require many different variations of calculation
logic. Implementing a visitor allows the logic to be de-coupled from the invoices and line items. This allows
the hierarchy of items to be visited by calculation code that can then apply the proper rates for the region.
Changing regions is as simple as substituting a different visitor.

continued on 47

 47Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

public interface EmployeeVisitor {
 abstract void visit(Employee emp);
}

class EmployeeDisplayVisitor implements EmployeeVisitor{

 @Override
 public void visit(Employee emp) {
 System.out.println(emp.getName());
 }
}

public interface VisitorElement {
 void accept(EmployeeVisitor visitor);
}

public class Company implements VisitorElement {
 private final List<Employee> employees = new ArrayList<>();
 public void displayEmployeeNames(){
 EmployeeDisplayVisitor visitor = new EmployeeDisplayVisitor();
 accept(visitor);
 }

 @Override
 public void accept(EmployeeVisitor visitor){
 for (Employee employee : employees) {
 visitor.visit(employee);
 }
 }
}

Template Design Pattern
The template design pattern defines program skeleton of an algorithm in a method called a template method,
which defers some steps to subclasses. It lets one redefine certain steps of an algorithm without changing the
algorithm's structure.
For example,
A online computer buying shop (www.dell.com) provides with a template specifications of computer, like
Monitor, HDD, RAM, CPU, Disk Drive, etc. An individual buyer can customize the HDD capacity, Monitor size,
RAM size, CPU clock speed keeping the overall structure same.

Decorator Design Pattern
A design pattern that allows behavior to be added to an existing object dynamically.

Observer Design Pattern
A pattern in which an object, called the subject, maintains a list of its dependents, called observers, and notify
them automatically of any state changes, usually by calling one of their methods.

Strategy Design Pattern
Strategy is a design pattern whereby an algorithm's behavior can be selected at runtime, and making them
interchangeable.
Strategy lets the algorithm vary independently from clients that use it.

continued on 48

 48Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Class Diagram For Strategy
Context uses strategy to perform a calculation, whose behavior can be changed at runtime by substituting
ConcreteStrategyA with ConcreteStrategyB.

Context Strategy
<<Interface>>

ConcreteStrategyA

<<Implementation>>

ConcreteStrategyB

<<Implementation>>

Facade Design Pattern
Facade provides a single interface to a set of interfaces in the system, like in case of DAO Facade where we
hide the internal details of an ORM framework and provide the end programmer with a simple interface to find/
delete and update an Object into the database.
It should be used when a simple interface is needed to provide access to a very complex underlying system.

Another good example of facade design pattern could be : exposing a set of functionalities using web services
(SOA architecture). Client does not need to worry about the complex dependencies of the underlying system
after building such API.

Q 29. What is a strong, soft, weak and Phantom reference in Java? Where are these
used?

Skills Set - in depth understanding for GC, automatic memory allocation and de-allocation, LRU Cache, etc

SoftReference, WeakReference & PhantomReference are are reference-object classes, which supports limited
degree of interaction with the GC. A programmer may use these classes to maintain a reference to some other
object (referent) in such a way that the object may still be reclaimed by GC.

Reference Queues
Reference queue is used to track the objects claimed by GC. We can use the reference objects to check
whether the objects referred by these are still active or are claimed by GC.

SoftReference
If the strongest reference to an object is a soft reference then GC will not reclaim the object until the JVM is
falling short of memory, though it must be reclaimed before throwing an Out Of Memory Error. So the object will
stay longer than a weakly referenced object. It is mostly used for writing memory sensitive caches.

WeakReference
Is similar to soft reference with the only difference that it will be GC'ed in the next GC cycle if the strongest
reference to the object is a weak reference. When a weak reference has been created with an associated
reference queue and the referent becomes a candidate for GC, the reference object (not the referent) is
enqueued on the reference queue after the reference is cleared. The application can then retrieve the
reference from the reference queue and learn that the referent has been collected so it can perform associated
cleanup activities, such as expunging the entries for objects that have fallen out of a weak collection.
WeakHashMap
It is a HashMap that store its keys (not values) using WeakReferences. An entry in this continued on 49

 49Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

map is automatically removed when there is no other non-weak references to keys. This collection can be used
to store associative objects like transient object & its metadata, as soon as the object is claimed by the GC,
the associated metadata will also be removed by the map. Other application could be in a servlet environment
where as soon as the session expire's, clear all the session data/attributes.

PhantomReference
PhantomReference are garbage collected when the strongest reference to an object is a phantom. When an
object is phantomly reachable, the object is already finalized but not yet reclaimed, so the GC enqueues it in
a reference queue for post finalization processing. A Phantom Reference is not automatically cleared when it
is enqueued., so we must remember to call its clear() method or to allow phantom reference object itself to be
garbage collected. get() method always return null so as not to allow resurrect the referent object.
Phantom references are safe way to know an object has been removed from memory and could be thought of
as a substitute for finalize() method.

Automatically-cleared references
Soft and weak references are automatically cleared by the collector before being added to the queues with
which they are registered, if any. Therefore soft and weak references need not be registered with a queue
in order to be useful, while phantom references do. An object that is reachable via phantom references will
remain so until all such references are cleared or themselves become unreachable.

Reachability levels from strongest to weakest : strong, soft, weak, phantom. Java 6 docs states that -
•	 An object is strongly reachable if it can be reached by some thread without traversing any reference

objects. A newly-created object is strongly reachable by the thread that created it.
•	 An object is softly reachable if it is not strongly reachable but can be reached by traversing a soft reference.
•	 An object is weakly reachable if it is neither strongly nor softly reachable but can be reached by traversing

a weak reference. When the weak references to a weakly-reachable object are cleared, the object
becomes eligible for finalization.

•	 An object is phantom reachable if it is neither strongly, softly, nor weakly reachable, it has been finalized,
and some phantom reference refers to it.

•	 Finally, an object is unreachable, and therefore eligible for reclamation, when it is not reachable in any of
the above ways.

Notes
WeakHashMap is not a solution for implementing cache, SoftReference's could be better utilized for
implementing cache.

Applications of a WeakHashMap
WeakHashMap stores its keys using WeakReference, and can be used to map transient objects with their
metadata. Let's suppose we have a socket application which creates sockets on client's request and socket
lives there for sometime. Now if we want to associate some metadata with this socket such as identity of
the user, then WeakHashMap is a ideal container for storing such associative information. Since we are not
managing the lifecycle of the socket in this case, WeakHashMap will automatically remove all the metadata as
soon as the socket dies.

Applications of SoftReference
Soft references can be used to build memory sensitive cache which automatically collects items as soon as the
cache is under high memory load, which otherwise has to be achieved by the programmer.

 50Chapter - Concepts	 Cracking Java Interviews (Java 8, Hibernate & Spring)

Q 30. What are database transaction Isolation levels?

Let's first get familiar with the common problems occurring in concurrent database applications, for example

Dirty Read
Occurs when uncommitted results of one transaction are made visible to another transaction.

Unrepeatable Reads
Occurs when the subsequent reads of same data by a transaction results in seeing different values.

Phantom Reads
One transaction performs a query returning multiple rows, and later executing the same query again sees
some additional rows that were not present the first time.

We also call above three as Isolation Hazards, and the Transaction Isolation levels are related to these three
problems.

Isolation Level Dirty read Unrepeatable read Phantom read
Read Uncommitted Yes Yes Yes
Read Committed No Yes Yes
Repeatable Read No No Yes
Serializable No No No

For most of databases, the default Transaction Isolation Level is Read Committed.
(Read Committed does not see any inconsistent state of other transaction, with a fair amount of concurrency)

READ_UNCOMMITTED isolation level states that a transaction may read data that is still uncommitted by
other transactions. This constraint is very relaxed in what matters to transactional concurrency but it may lead
to some issues like dirty reads.

READ_COMMITTED isolation level states that a transaction can't read data that is not yet committed by other
transactions. But the repeated read within the same transaction may get different results.

REPEATABLE_READ isolation level states that if a transaction reads one record from the database multiple
times the result of all those reading operations must always be the same. This eliminates both the dirty read
and the non-repeatable read issues.

SERIALIZABLE isolation level is the most restrictive of all isolation levels. Transactions are executed with
locking at all levels (read, range and write locking) so they appear as if they were executed in a serialized way.
This leads to a scenario where none of the issues mentioned above may occur, but in the other way we don't
allow transaction concurrency and consequently introduce a performance penalty.

Please be noted that the above four isolation levels are in decreasing order of their concurrency. So for
scalability reasons, Serializable is rarely a good choice of design, as it offers only a single thread to work at a
given time.

General practice to choose Isolation level
Choose the lowest isolation level that can keep our data safe.

Sample Chapters End Here.

Purchase Full PDF from Shunya Books
Platform

Click Here To Buy

https://books.shunyafoundation.com/to/sku2?affid=samplepdf

	Sample Chapters - Cracking Core Java Interviews 3rd Edition
	SI Purchase Page

